Theoretical investigation on nonlinear dynamic characteristic of spindle system

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Advanced Composites Letters Pub Date : 2020-06-10 DOI:10.1177/2633366X20911665
Xiang-sheng Gao, Zeyun Qin, Min Wang, Yu-ya Hao, Zi-yi Liu
{"title":"Theoretical investigation on nonlinear dynamic characteristic of spindle system","authors":"Xiang-sheng Gao, Zeyun Qin, Min Wang, Yu-ya Hao, Zi-yi Liu","doi":"10.1177/2633366X20911665","DOIUrl":null,"url":null,"abstract":"Radial gap will occur at the spindle–tool holder interface when the spindle rotates at high speed. Therefore, the radial gap will lead to the nonlinear stiffness at the spindle–tool holder connection, and it will have effects on dynamic characteristic of spindle system. In this research, classic elastic theory is adopted to evaluate the nonlinear stiffness at spindle–tool holder interface. Dynamic model of spindle system is established considering the nonlinear stiffness at spindle–tool holder interface. The fourth-order Runge–Kutta method is applied to solve dynamic response of the spindle system. On that basis, effects of drawbar force on dynamic characteristic of the system are investigated. Considering the cutting force, effects of rotational speed on dynamic response of cutter tip are also discussed. The numerical results show that the drawbar force has effects on vibration mode of cutter tip. Chaotic motion will not occur within the range concerned in engineering practice. Considering the cutting force, the motion of cutter tip turns to be chaotic. The proper rotational speed and drawbar force should be chosen to ensure a stable cutting according to the response of cutter tip.","PeriodicalId":55551,"journal":{"name":"Advanced Composites Letters","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2633366X20911665","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2633366X20911665","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Radial gap will occur at the spindle–tool holder interface when the spindle rotates at high speed. Therefore, the radial gap will lead to the nonlinear stiffness at the spindle–tool holder connection, and it will have effects on dynamic characteristic of spindle system. In this research, classic elastic theory is adopted to evaluate the nonlinear stiffness at spindle–tool holder interface. Dynamic model of spindle system is established considering the nonlinear stiffness at spindle–tool holder interface. The fourth-order Runge–Kutta method is applied to solve dynamic response of the spindle system. On that basis, effects of drawbar force on dynamic characteristic of the system are investigated. Considering the cutting force, effects of rotational speed on dynamic response of cutter tip are also discussed. The numerical results show that the drawbar force has effects on vibration mode of cutter tip. Chaotic motion will not occur within the range concerned in engineering practice. Considering the cutting force, the motion of cutter tip turns to be chaotic. The proper rotational speed and drawbar force should be chosen to ensure a stable cutting according to the response of cutter tip.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主轴系统非线性动态特性的理论研究
主轴高速旋转时,主轴与刀柄界面处会产生径向间隙。因此,径向间隙会导致主轴-刀柄连接处的非线性刚度,并对主轴系统的动态特性产生影响。本研究采用经典弹性理论对主轴-刀柄界面的非线性刚度进行了计算。考虑主轴-刀柄界面的非线性刚度,建立了主轴系统的动力学模型。采用四阶龙格-库塔法求解主轴系统的动力响应。在此基础上,研究了拉杆力对系统动态特性的影响。考虑切削力,讨论了转速对刀尖动态响应的影响。数值结果表明,拔杆力对刀尖的振动模式有影响。在工程实践中,在有关范围内不会出现混沌运动。考虑切削力的作用,刀尖运动变得混沌。根据刀尖的响应,选择合适的转速和拉拔力,以保证稳定的切削。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Composites Letters
Advanced Composites Letters 工程技术-材料科学:复合
自引率
0.00%
发文量
0
审稿时长
4.2 months
期刊介绍: Advanced Composites Letters is a peer reviewed, open access journal publishing research which focuses on the field of science and engineering of advanced composite materials or structures.
期刊最新文献
Microstructure and mechanical properties of aluminum matrix composites with different volume fractions of surface-oxidized nanodiamonds Surface modification of hollow glass microsphere and its marine-adaptive composites with epoxy resin Intelligent recognition of acoustic emission signals from damage of glass fiber-reinforced plastics Estimation of fastener pull-through resistance of composite laminates based on generalized regression neural network Post-impact damage tolerance of natural fibre-reinforced sheet moulding compound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1