Entwicklung und Evaluation eines Wiegesystems für Forstkräne auf Basis von künstlichen neuronalen Netzen

Q4 Agricultural and Biological Sciences Landtechnik Pub Date : 2019-09-27 DOI:10.15150/LT.2019.3213
C. Geiger, Daniel Greff, M. Starke, M. Geimer
{"title":"Entwicklung und Evaluation eines Wiegesystems für Forstkräne auf Basis von künstlichen neuronalen Netzen","authors":"C. Geiger, Daniel Greff, M. Starke, M. Geimer","doi":"10.15150/LT.2019.3213","DOIUrl":null,"url":null,"abstract":"In both log and chip logistics, important reference data for logistic purposes are often lacking, as they are usually completed with insufficiently accurate estimates. In order to obtain higher quality information on the moving timber quantities, optional crane scales can be mounted between the telescope and the grapple of the forwarder. However, this has a negative effect on the crane kinematics and manoeuvrability while at the same time machine productivity is reduced due to an interruption in the loading process necessary for measurement.In this paper, a data-based method is presented which allows dynamic weighing in a continuous loading process for modern forestry cranes without the need to install an additional hardware component on the machine. This allows a cost-effective and comprehensive application. In the course of this method, a loading cycle is automatically detected, and the loaded mass is estimated by means of an artificial neural network (ANN). Signals from sensors installed as standard on modern forwarders serve as input variables. The Long Short-Term Memory (LSTM) architecture for the neural network has proven itself for handling these time-based sensor data. Based on LSTM cells, an appropriate network was designed, trained and subsequently optimized. The test shows an average full-scale error of 1.5% per 1,000 kg for a single loading cycle. For a fully loaded forwarder, this results in a total mass error of less than 1.2%.","PeriodicalId":35524,"journal":{"name":"Landtechnik","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landtechnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15150/LT.2019.3213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

In both log and chip logistics, important reference data for logistic purposes are often lacking, as they are usually completed with insufficiently accurate estimates. In order to obtain higher quality information on the moving timber quantities, optional crane scales can be mounted between the telescope and the grapple of the forwarder. However, this has a negative effect on the crane kinematics and manoeuvrability while at the same time machine productivity is reduced due to an interruption in the loading process necessary for measurement.In this paper, a data-based method is presented which allows dynamic weighing in a continuous loading process for modern forestry cranes without the need to install an additional hardware component on the machine. This allows a cost-effective and comprehensive application. In the course of this method, a loading cycle is automatically detected, and the loaded mass is estimated by means of an artificial neural network (ANN). Signals from sensors installed as standard on modern forwarders serve as input variables. The Long Short-Term Memory (LSTM) architecture for the neural network has proven itself for handling these time-based sensor data. Based on LSTM cells, an appropriate network was designed, trained and subsequently optimized. The test shows an average full-scale error of 1.5% per 1,000 kg for a single loading cycle. For a fully loaded forwarder, this results in a total mass error of less than 1.2%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计和评估基于人工神经网络的森林起重机系统
在日志和芯片物流中,通常缺乏用于物流目的的重要参考数据,因为它们通常是在不够准确的估计下完成的。为了获得关于移动木材数量的更高质量的信息,可以在望远镜和货代的扭斗之间安装可选的起重机秤。然而,这对起重机的运动学和机动性有负面影响,同时由于测量所需的装载过程中断,机器生产率降低。本文提出了一种基于数据的方法,在不需要在机器上安装额外的硬件组件的情况下,可以在现代林业起重机的连续装载过程中进行动态称重。这使得成本效益和全面的应用。该方法在自动检测加载周期的同时,利用人工神经网络对加载质量进行估计。来自传感器的信号作为标准安装在现代货代作为输入变量。神经网络的长短期记忆(LSTM)架构已经被证明可以处理这些基于时间的传感器数据。基于LSTM单元,设计、训练并优化相应的网络。试验表明,在单次加载循环中,每1,000 kg的平均满量程误差为1.5%。对于满载货代,这导致总质量误差小于1.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Landtechnik
Landtechnik Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
1.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Untersuchung zur Desintegration von Gärmedien in einer parallel betriebenen Pilotbiogasanlage Umsetzung einer prädiktiven Fahrstrategie durch radarbasierte Steigungserkennung in Traktoren Development and evaluation of a device to incorporate biodegradable textiles into sports turfs Gärrestaufbereitung als Beitrag zur Nährstoffentfrachtung von Überschussregionen – Kosten und Treibhausgasemissionen Food-scanner applications in the fruit and vegetable sector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1