Si-Qi Liu, Delong Li, Jun Li, Hao Wang, Yun-Ting Bu, Jie Su, J. Chen, Shibo Cheng
{"title":"External-field regulated superatoms","authors":"Si-Qi Liu, Delong Li, Jun Li, Hao Wang, Yun-Ting Bu, Jie Su, J. Chen, Shibo Cheng","doi":"10.1080/23746149.2023.2244541","DOIUrl":null,"url":null,"abstract":"ABSTRACT As a special class of stable atomic clusters, the superatom has become an exciting research topic in recent decades. They can mimic the chemistry and physics of individual atoms in the periodic table and find potential applications in a variety of fields. Traditional strategies for superatom design, however, have their own limitations. Herein, we review recent progress in the discovery of novel methodologies for superatom design, namely external-field regulated strategies (EFRS). We begin with a description of the basic concept of the superatom and the conventional electron-counting rules for superatom design, followed by a discussion of recent exploration about external-field regulated superatoms, where the oriented external electric field (OEEF), the ligand field, and the solvent field are presented. In the concluding section, we discuss the benefits and challenges of the EFRS together with some future research topics.","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics: X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/23746149.2023.2244541","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT As a special class of stable atomic clusters, the superatom has become an exciting research topic in recent decades. They can mimic the chemistry and physics of individual atoms in the periodic table and find potential applications in a variety of fields. Traditional strategies for superatom design, however, have their own limitations. Herein, we review recent progress in the discovery of novel methodologies for superatom design, namely external-field regulated strategies (EFRS). We begin with a description of the basic concept of the superatom and the conventional electron-counting rules for superatom design, followed by a discussion of recent exploration about external-field regulated superatoms, where the oriented external electric field (OEEF), the ligand field, and the solvent field are presented. In the concluding section, we discuss the benefits and challenges of the EFRS together with some future research topics.
期刊介绍:
Advances in Physics: X is a fully open-access journal that promotes the centrality of physics and physical measurement to modern science and technology. Advances in Physics: X aims to demonstrate the interconnectivity of physics, meaning the intellectual relationships that exist between one branch of physics and another, as well as the influence of physics across (hence the “X”) traditional boundaries into other disciplines including:
Chemistry
Materials Science
Engineering
Biology
Medicine