Jan Weinkaemmerer, Matthias Göbel, S. Serafin, Ivan Bašták Ďurán, Jürg Schmidli
{"title":"Boundary‐Layer Plumes over Mountainous Terrain in Idealized Large‐Eddy Simulations","authors":"Jan Weinkaemmerer, Matthias Göbel, S. Serafin, Ivan Bašták Ďurán, Jürg Schmidli","doi":"10.1002/qj.4551","DOIUrl":null,"url":null,"abstract":"Coherent plume structures in the convective boundary layer over non‐flat terrain are investigated using large‐eddy simulation. A conditional sampling method based on the concentration of a decaying passive tracer is implemented in order to identify the boundary‐layer plumes objectively. Conditional sampling allows to quantify the contribution of plume structures to the vertical transport of heat and moisture. A first set of simulations analyses the flow over an idealized valley, where the terrain elevation only varies along one horizontal coordinate axis. In this case, vertical transport by coherent structures is the dominant contribution to the turbulent components of both heat and moisture flux. It is comparable in magnitude to the advective transport by the mean slope‐wind circulation, although it is more important for heat than for moisture transport. A second set of simulations considers flow over terrain with a complex texture, drawn from an actual digital elevation model. In this case, conditional sampling is carried out by using a simple domain‐decomposition approach. We demonstrate that thermal updrafts are generally more frequent on hill tops than over the surroundings, but they are less persistent on the windward sides when large‐scale winds are present in the free atmosphere. Large‐scale, upper‐level winds tend to reduce the vertical moisture transport by the slope winds.This article is protected by copyright. All rights reserved.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4551","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Coherent plume structures in the convective boundary layer over non‐flat terrain are investigated using large‐eddy simulation. A conditional sampling method based on the concentration of a decaying passive tracer is implemented in order to identify the boundary‐layer plumes objectively. Conditional sampling allows to quantify the contribution of plume structures to the vertical transport of heat and moisture. A first set of simulations analyses the flow over an idealized valley, where the terrain elevation only varies along one horizontal coordinate axis. In this case, vertical transport by coherent structures is the dominant contribution to the turbulent components of both heat and moisture flux. It is comparable in magnitude to the advective transport by the mean slope‐wind circulation, although it is more important for heat than for moisture transport. A second set of simulations considers flow over terrain with a complex texture, drawn from an actual digital elevation model. In this case, conditional sampling is carried out by using a simple domain‐decomposition approach. We demonstrate that thermal updrafts are generally more frequent on hill tops than over the surroundings, but they are less persistent on the windward sides when large‐scale winds are present in the free atmosphere. Large‐scale, upper‐level winds tend to reduce the vertical moisture transport by the slope winds.This article is protected by copyright. All rights reserved.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.