{"title":"About Total Stability of a Class of Nonlinear Dynamic Systems Eventually Subject to Discrete Internal Delays","authors":"M. de La Sen","doi":"10.1155/2021/5593813","DOIUrl":null,"url":null,"abstract":"This paper studies and investigates total stability results of a class of dynamic systems within a prescribed closed ball of the state space around the origin. The class of systems under study includes unstructured nonlinearities subject to multiple higher-order Lipschitz-type conditions which influence the dynamics and which can be eventually interpreted as unstructured perturbations. The results are also extended to the case of presence of multiple internal (i.e., in the state) point discrete delays. Some stability extensions are also discussed for the case when the systems are subject to forcing efforts by using links between the controllability and stabilizability concepts from control theory and the existence of stabilizing linear controls. The results are based on the ad hoc use of Gronwall’s inequality.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/5593813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
This paper studies and investigates total stability results of a class of dynamic systems within a prescribed closed ball of the state space around the origin. The class of systems under study includes unstructured nonlinearities subject to multiple higher-order Lipschitz-type conditions which influence the dynamics and which can be eventually interpreted as unstructured perturbations. The results are also extended to the case of presence of multiple internal (i.e., in the state) point discrete delays. Some stability extensions are also discussed for the case when the systems are subject to forcing efforts by using links between the controllability and stabilizability concepts from control theory and the existence of stabilizing linear controls. The results are based on the ad hoc use of Gronwall’s inequality.