Improving the CONTES method for normalizing biomedical text entities with concepts from an ontology with (almost) no training data

Arnaud Ferré, Mouhamadou Ba, Robert Bossy
{"title":"Improving the CONTES method for normalizing biomedical text entities with concepts from an ontology with (almost) no training data","authors":"Arnaud Ferré, Mouhamadou Ba, Robert Bossy","doi":"10.5808/GI.2019.17.2.e20","DOIUrl":null,"url":null,"abstract":"Entity normalization, or entity linking in the general domain, is an information extraction task that aims to annotate/bind multiple words/expressions in raw text with semantic references, such as concepts of an ontology. An ontology consists minimally of a formally organized vocabulary or hierarchy of terms, which captures knowledge of a domain. Presently, machine-learning methods, often coupled with distributional representations, achieve good performance. However, these require large training datasets, which are not always available, especially for tasks in specialized domains. CONTES (CONcept-TErm System) is a supervised method that addresses entity normalization with ontology concepts using small training datasets. CONTES has some limitations, such as it does not scale well with very large ontologies, it tends to overgeneralize predictions, and it lacks valid representations for the out-of-vocabulary words. Here, we propose to assess different methods to reduce the dimensionality in the representation of the ontology. We also propose to calibrate parameters in order to make the predictions more accurate, and to address the problem of out-of-vocabulary words, with a specific method.","PeriodicalId":94288,"journal":{"name":"Genomics & informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics & informatics","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.5808/GI.2019.17.2.e20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Entity normalization, or entity linking in the general domain, is an information extraction task that aims to annotate/bind multiple words/expressions in raw text with semantic references, such as concepts of an ontology. An ontology consists minimally of a formally organized vocabulary or hierarchy of terms, which captures knowledge of a domain. Presently, machine-learning methods, often coupled with distributional representations, achieve good performance. However, these require large training datasets, which are not always available, especially for tasks in specialized domains. CONTES (CONcept-TErm System) is a supervised method that addresses entity normalization with ontology concepts using small training datasets. CONTES has some limitations, such as it does not scale well with very large ontologies, it tends to overgeneralize predictions, and it lacks valid representations for the out-of-vocabulary words. Here, we propose to assess different methods to reduce the dimensionality in the representation of the ontology. We also propose to calibrate parameters in order to make the predictions more accurate, and to address the problem of out-of-vocabulary words, with a specific method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进CONTES方法,用(几乎)没有训练数据的本体概念规范化生物医学文本实体
实体规范化,或通用领域中的实体链接,是一项信息提取任务,旨在用语义引用(如本体的概念)注释/绑定原始文本中的多个单词/表达式。本体至少由一个正式组织的词汇表或术语层次结构组成,它捕获了一个领域的知识。目前,机器学习方法通常与分布式表示相结合,可以获得良好的性能。然而,这些需要大型训练数据集,而这些数据集并不总是可用的,尤其是对于专业领域的任务。CONTES(CONcept TErm System)是一种有监督的方法,它使用小型训练数据集来处理实体规范化和本体概念。CONTES有一些局限性,比如它不能很好地与非常大的本体相适应,它倾向于过度概括预测,并且它缺乏对词汇表外单词的有效表示。在这里,我们建议评估不同的方法来降低本体表示的维度。我们还建议校准参数,以使预测更准确,并用特定的方法解决词汇表外单词的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analyzing COVID-19 progression with Markov multistage models: insights from a Korean cohort. Structural insights into antibody-based immunotherapy for hepatocellular carcinoma. DeepDoublet identifies neighboring cell-dependent gene expression. Rore: robust and efficient antioxidant protein classification via a novel dimensionality reduction strategy based on learning of fewer features. Rare disease genomics and precision medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1