{"title":"A clustering approach for data quality results of research information systems","authors":"Reza Edris Abadi, M. Ershadi, S. T. A. Niaki","doi":"10.1108/idd-07-2022-0063","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe overall goal of the data mining process is to extract information from an extensive data set and make it understandable for further use. When working with large volumes of unstructured data in research information systems, it is necessary to divide the information into logical groupings after examining their quality before attempting to analyze it. On the other hand, data quality results are valuable resources for defining quality excellence programs of any information system. Hence, the purpose of this study is to discover and extract knowledge to evaluate and improve data quality in research information systems.\n\n\nDesign/methodology/approach\nClustering in data analysis and exploiting the outputs allows practitioners to gain an in-depth and extensive look at their information to form some logical structures based on what they have found. In this study, data extracted from an information system are used in the first stage. Then, the data quality results are classified into an organized structure based on data quality dimension standards. Next, clustering algorithms (K-Means), density-based clustering (density-based spatial clustering of applications with noise [DBSCAN]) and hierarchical clustering (balanced iterative reducing and clustering using hierarchies [BIRCH]) are applied to compare and find the most appropriate clustering algorithms in the research information system.\n\n\nFindings\nThis paper showed that quality control results of an information system could be categorized through well-known data quality dimensions, including precision, accuracy, completeness, consistency, reputation and timeliness. Furthermore, among different well-known clustering approaches, the BIRCH algorithm of hierarchical clustering methods performs better in data clustering and gives the highest silhouette coefficient value. Next in line is the DBSCAN method, which performs better than the K-Means method.\n\n\nResearch limitations/implications\nIn the data quality assessment process, the discrepancies identified and the lack of proper classification for inconsistent data have led to unstructured reports, making the statistical analysis of qualitative metadata problems difficult and thus impossible to root out the observed errors. Therefore, in this study, the evaluation results of data quality have been categorized into various data quality dimensions, based on which multiple analyses have been performed in the form of data mining methods.\n\n\nOriginality/value\nAlthough several pieces of research have been conducted to assess data quality results of research information systems, knowledge extraction from obtained data quality scores is a crucial work that has rarely been studied in the literature. Besides, clustering in data quality analysis and exploiting the outputs allows practitioners to gain an in-depth and extensive look at their information to form some logical structures based on what they have found.\n","PeriodicalId":43488,"journal":{"name":"Information Discovery and Delivery","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Discovery and Delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/idd-07-2022-0063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose
The overall goal of the data mining process is to extract information from an extensive data set and make it understandable for further use. When working with large volumes of unstructured data in research information systems, it is necessary to divide the information into logical groupings after examining their quality before attempting to analyze it. On the other hand, data quality results are valuable resources for defining quality excellence programs of any information system. Hence, the purpose of this study is to discover and extract knowledge to evaluate and improve data quality in research information systems.
Design/methodology/approach
Clustering in data analysis and exploiting the outputs allows practitioners to gain an in-depth and extensive look at their information to form some logical structures based on what they have found. In this study, data extracted from an information system are used in the first stage. Then, the data quality results are classified into an organized structure based on data quality dimension standards. Next, clustering algorithms (K-Means), density-based clustering (density-based spatial clustering of applications with noise [DBSCAN]) and hierarchical clustering (balanced iterative reducing and clustering using hierarchies [BIRCH]) are applied to compare and find the most appropriate clustering algorithms in the research information system.
Findings
This paper showed that quality control results of an information system could be categorized through well-known data quality dimensions, including precision, accuracy, completeness, consistency, reputation and timeliness. Furthermore, among different well-known clustering approaches, the BIRCH algorithm of hierarchical clustering methods performs better in data clustering and gives the highest silhouette coefficient value. Next in line is the DBSCAN method, which performs better than the K-Means method.
Research limitations/implications
In the data quality assessment process, the discrepancies identified and the lack of proper classification for inconsistent data have led to unstructured reports, making the statistical analysis of qualitative metadata problems difficult and thus impossible to root out the observed errors. Therefore, in this study, the evaluation results of data quality have been categorized into various data quality dimensions, based on which multiple analyses have been performed in the form of data mining methods.
Originality/value
Although several pieces of research have been conducted to assess data quality results of research information systems, knowledge extraction from obtained data quality scores is a crucial work that has rarely been studied in the literature. Besides, clustering in data quality analysis and exploiting the outputs allows practitioners to gain an in-depth and extensive look at their information to form some logical structures based on what they have found.
期刊介绍:
Information Discovery and Delivery covers information discovery and access for digital information researchers. This includes educators, knowledge professionals in education and cultural organisations, knowledge managers in media, health care and government, as well as librarians. The journal publishes research and practice which explores the digital information supply chain ie transport, flows, tracking, exchange and sharing, including within and between libraries. It is also interested in digital information capture, packaging and storage by ‘collectors’ of all kinds. Information is widely defined, including but not limited to: Records, Documents, Learning objects, Visual and sound files, Data and metadata and , User-generated content.