Elastic Data Binning: Time-Series Sketching for Time-Domain Astrophysics Analysis

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Applied Computing Review Pub Date : 2023-06-01 DOI:10.1145/3610019.3610020
S. Sako
{"title":"Elastic Data Binning: Time-Series Sketching for Time-Domain Astrophysics Analysis","authors":"S. Sako","doi":"10.1145/3610019.3610020","DOIUrl":null,"url":null,"abstract":"Time-domain astrophysics analysis (TDAA) involves observational surveys of celestial phenomena that may contain irrelevant information because of several factors, one of which is the sensitivity of the optical telescopes. Data binning is a typical technique for removing inconsistencies and clarifying the main characteristics of the original data in astrophysics analysis. It splits the data sequence into smaller bins with a fixed size and subsequently sketches them into a new representation form. In this study, we introduce a novel approach, called elastic data binning (EBinning), to automatically adjust each bin size using two statistical metrics based on the Student's t-test for linear regression and Hoeffding inequality. EBinning outperforms well-known algorithms in TDAA for extracting relevant characteristics of time-series data, called lightcurve. We demonstrate the successful representation of various characteristics in the lightcurve gathered from the Kiso Schmidt telescope using EBinning and its applicability for transient detection in TDAA.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":" ","pages":"5 - 22"},"PeriodicalIF":0.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3610019.3610020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Time-domain astrophysics analysis (TDAA) involves observational surveys of celestial phenomena that may contain irrelevant information because of several factors, one of which is the sensitivity of the optical telescopes. Data binning is a typical technique for removing inconsistencies and clarifying the main characteristics of the original data in astrophysics analysis. It splits the data sequence into smaller bins with a fixed size and subsequently sketches them into a new representation form. In this study, we introduce a novel approach, called elastic data binning (EBinning), to automatically adjust each bin size using two statistical metrics based on the Student's t-test for linear regression and Hoeffding inequality. EBinning outperforms well-known algorithms in TDAA for extracting relevant characteristics of time-series data, called lightcurve. We demonstrate the successful representation of various characteristics in the lightcurve gathered from the Kiso Schmidt telescope using EBinning and its applicability for transient detection in TDAA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弹性数据分仓:用于时域天体物理分析的时间序列绘制
时域天体物理学分析(TDAA)涉及对可能包含不相关信息的天体现象的观测调查,因为几个因素,其中之一是光学望远镜的灵敏度。数据装仓是天体物理学分析中消除不一致性和澄清原始数据主要特征的典型技术。它将数据序列拆分为具有固定大小的较小的仓,然后将它们绘制成一种新的表示形式。在这项研究中,我们引入了一种新方法,称为弹性数据仓(EBinning),使用两种基于线性回归和Hoeffding不等式的Student t检验的统计指标自动调整每个仓的大小。EBinning在提取时间序列数据的相关特征(称为光曲线)方面优于TDAA中的知名算法。我们证明了使用EBinning成功地表示了从Kiso Schmidt望远镜收集的光曲线中的各种特性,以及它在TDAA瞬态检测中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
期刊最新文献
DIWS-LCR-Rot-hop++: A Domain-Independent Word Selector for Cross-Domain Aspect-Based Sentiment Classification Leveraging Semantic Technologies for Collaborative Inference of Threatening IoT Dependencies Relating Optimal Repairs in Ontology Engineering with Contraction Operations in Belief Change Block-RACS: Towards Reputation-Aware Client Selection and Monetization Mechanism for Federated Learning Elastic Data Binning: Time-Series Sketching for Time-Domain Astrophysics Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1