Research on oxy-fuel combustion power cycle using nitrogen for turbine cooling

IF 0.8 Q4 THERMODYNAMICS Archives of Thermodynamics Pub Date : 2023-07-20 DOI:10.24425/ather.2020.135859
V. Kindra, Rogalev, O. Zlyvko, A. Zonov, M. Smirnov, Ilya
{"title":"Research on oxy-fuel combustion power cycle using nitrogen for turbine cooling","authors":"V. Kindra, Rogalev, O. Zlyvko, A. Zonov, M. Smirnov, Ilya","doi":"10.24425/ather.2020.135859","DOIUrl":null,"url":null,"abstract":"One of the problems in Russia Power Sector strategy until 2035 is the technologies development for mitigation of harmful emissions by the heat and power production industry. This goal may be reached by the transition to environmentally friendly generation units such as oxy-fuel combustion power cycles that burn organic fuels in pure oxygen. This paper provides the results of research on one of the most efficient oxy-fuel combustion power cycle, which was modified by the usage of nitrogen for turbine cooling. The computer simulation and parametric optimization approaches are described in detail. The net efficiency of the oxy-fuel combustion power cycle in relationship to the carbon dioxide turbine exhaust pressure is shown. Moreover, the influence of the regenerator scheme and modeling parameters on heat performance is obtained. Particularly, it was found that the transition to a scheme with five two-threaded heat exchangers decrease cycle efficiency by 4.2% compare to a scheme with a multi-stream regenerator.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ather.2020.135859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 4

Abstract

One of the problems in Russia Power Sector strategy until 2035 is the technologies development for mitigation of harmful emissions by the heat and power production industry. This goal may be reached by the transition to environmentally friendly generation units such as oxy-fuel combustion power cycles that burn organic fuels in pure oxygen. This paper provides the results of research on one of the most efficient oxy-fuel combustion power cycle, which was modified by the usage of nitrogen for turbine cooling. The computer simulation and parametric optimization approaches are described in detail. The net efficiency of the oxy-fuel combustion power cycle in relationship to the carbon dioxide turbine exhaust pressure is shown. Moreover, the influence of the regenerator scheme and modeling parameters on heat performance is obtained. Particularly, it was found that the transition to a scheme with five two-threaded heat exchangers decrease cycle efficiency by 4.2% compare to a scheme with a multi-stream regenerator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用氮气进行涡轮冷却的全氧燃烧动力循环研究
俄罗斯2035年前电力部门战略的问题之一是开发技术,以减少热电生产行业的有害排放。这一目标可以通过向环境友好型发电装置的过渡来实现,例如在纯氧中燃烧有机燃料的氧燃料燃烧动力循环。本文提供了一种最有效的全氧燃料燃烧动力循环的研究结果,该循环通过使用氮气对涡轮冷却进行改进。详细介绍了计算机仿真和参数优化方法。纯氧燃料燃烧动力循环的净效率与二氧化碳涡轮排气压力的关系如图所示。此外,还得到了蓄热器方案和建模参数对热性能的影响。特别是,与多流蓄热器方案相比,过渡到五个双螺纹换热器方案的循环效率降低了4.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Thermodynamics
Archives of Thermodynamics THERMODYNAMICS-
CiteScore
1.80
自引率
22.20%
发文量
0
期刊介绍: The aim of the Archives of Thermodynamics is to disseminate knowledge between scientists and engineers interested in thermodynamics and heat transfer and to provide a forum for original research conducted in Central and Eastern Europe, as well as all over the world. The journal encompass all aspect of the field, ranging from classical thermodynamics, through conduction heat transfer to thermodynamic aspects of multiphase flow. Both theoretical and applied contributions are welcome. Only original papers written in English are consider for publication.
期刊最新文献
Use of reinforced ice as alternative building material in cold regions: an overview Alternative method of making electrical connections in the 1st and 3rd generation modules as an effective way to improve module efficiency and reduce production costs Thermodynamic analysis of hybrid ceramic bearings with metal inner rings Geometrical and optical analysis of small-sized parabolic trough collector using ray tracing tool SolTrace Modular heat storage in waste heat recovery installations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1