A machine learning approach using legacy geophysical datasets to model Quaternary marine paleotopography

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2023-09-01 DOI:10.1016/j.acags.2023.100128
Jeffrey Obelcz , Trilby Hill , Davin J. Wallace , Benjamin J. Phrampus , Jordan H. Graw
{"title":"A machine learning approach using legacy geophysical datasets to model Quaternary marine paleotopography","authors":"Jeffrey Obelcz ,&nbsp;Trilby Hill ,&nbsp;Davin J. Wallace ,&nbsp;Benjamin J. Phrampus ,&nbsp;Jordan H. Graw","doi":"10.1016/j.acags.2023.100128","DOIUrl":null,"url":null,"abstract":"<div><p>High-resolution subsurface marine mapping tools, including chirp and 3D seismic, enable the reconstruction of ancient landscapes that have been buried and subsequently submerged by marine transgression. However, the established methods for paleotopographic reconstruction require time consuming field and data interpretation efforts. Here we present a novel methodology using machine learning to estimate Marine Isotope Stage 2 (MIS2) paleotopography over a large (22 000 km<sup>2</sup>) area of the Northern Gulf of Mexico with meter-scale accuracy (2.7 m mean prediction error, 4.3 m 1-σ mean uncertainty). A relatively small area (3300 km<sup>2</sup>) of high-resolution (30 × 30 m) interpreted paleotopography is used as training and validation data, while modern bathymetry and MIS2 paleovalley location (binary deep/shallow paleotopography) are used as predictors. This approach merges the high-resolution of modern mapping techniques and the broad coverage of low-resolution legacy geophysical data. Machine learning-modeled paleotopography is not a substitute for precise high-resolution paleotopography reconstruction techniques, but it can be used to reasonably approximate paleotopography over large areas with greatly reduced expense and expertise.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"19 ","pages":"Article 100128"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197423000174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

High-resolution subsurface marine mapping tools, including chirp and 3D seismic, enable the reconstruction of ancient landscapes that have been buried and subsequently submerged by marine transgression. However, the established methods for paleotopographic reconstruction require time consuming field and data interpretation efforts. Here we present a novel methodology using machine learning to estimate Marine Isotope Stage 2 (MIS2) paleotopography over a large (22 000 km2) area of the Northern Gulf of Mexico with meter-scale accuracy (2.7 m mean prediction error, 4.3 m 1-σ mean uncertainty). A relatively small area (3300 km2) of high-resolution (30 × 30 m) interpreted paleotopography is used as training and validation data, while modern bathymetry and MIS2 paleovalley location (binary deep/shallow paleotopography) are used as predictors. This approach merges the high-resolution of modern mapping techniques and the broad coverage of low-resolution legacy geophysical data. Machine learning-modeled paleotopography is not a substitute for precise high-resolution paleotopography reconstruction techniques, but it can be used to reasonably approximate paleotopography over large areas with greatly reduced expense and expertise.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种使用传统地球物理数据集对第四纪海洋古地形建模的机器学习方法
包括chirp和3D地震在内的高分辨率地下海洋测绘工具,可以重建被海侵掩埋并随后被淹没的古代景观。然而,现有的古地形重建方法需要耗费大量的野外和资料解释工作。在这里,我们提出了一种新的方法,利用机器学习来估计墨西哥湾北部大片(22000 km2)地区的海洋同位素阶段2 (MIS2)古地形,其米尺度精度(平均预测误差为2.7 m,平均不确定性为4.3 m)。使用相对较小面积(3300 km2)的高分辨率(30 × 30 m)解释古地形作为训练和验证数据,而现代水深测量和MIS2古山谷位置(二元深/浅古地形)用作预测数据。这种方法结合了现代测绘技术的高分辨率和广泛覆盖的低分辨率传统地球物理数据。机器学习建模古地形并不能代替精确的高分辨率古地形重建技术,但它可以用来合理地近似大面积的古地形,大大降低了成本和专业知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
A machine learning approach for mapping susceptibility to land subsidence caused by ground water extraction Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1