Modified Backpropagation Algorithm with Multiplicative Calculus in Neural Networks

IF 0.9 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Elektronika Ir Elektrotechnika Pub Date : 2023-06-27 DOI:10.5755/j02.eie.34105
Serkan Ozbay
{"title":"Modified Backpropagation Algorithm with Multiplicative Calculus in Neural Networks","authors":"Serkan Ozbay","doi":"10.5755/j02.eie.34105","DOIUrl":null,"url":null,"abstract":"Backpropagation is one of the most widely used algorithms for training feedforward deep neural networks. The algorithm requires a differentiable activation function and it performs computations of the gradient proceeding backwards through the feedforward deep neural network from the last layer through to the first layer. In order to calculate the gradient at a specific layer, the gradients of all layers are combined via the chain rule of calculus. One of the biggest disadvantages of the backpropagation is that it requires a large amount of training time. To overcome this issue, this paper proposes a modified backpropagation algorithm with multiplicative calculus. Multiplicative calculus provides an alternative to the classical calculus and it defines new kinds of derivative and integral forms in multiplicative form rather than addition and subtraction forms. The performance analyzes are discussed in various case studies and the results are given comparatively with classical backpropagation algorithm. It is found that the proposed modified backpropagation algorithm converges in less time to the solution and thus provides fast training in the given case studies. It is also shown that the proposed algorithm avoids the local minima problem.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.34105","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Backpropagation is one of the most widely used algorithms for training feedforward deep neural networks. The algorithm requires a differentiable activation function and it performs computations of the gradient proceeding backwards through the feedforward deep neural network from the last layer through to the first layer. In order to calculate the gradient at a specific layer, the gradients of all layers are combined via the chain rule of calculus. One of the biggest disadvantages of the backpropagation is that it requires a large amount of training time. To overcome this issue, this paper proposes a modified backpropagation algorithm with multiplicative calculus. Multiplicative calculus provides an alternative to the classical calculus and it defines new kinds of derivative and integral forms in multiplicative form rather than addition and subtraction forms. The performance analyzes are discussed in various case studies and the results are given comparatively with classical backpropagation algorithm. It is found that the proposed modified backpropagation algorithm converges in less time to the solution and thus provides fast training in the given case studies. It is also shown that the proposed algorithm avoids the local minima problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络中基于乘法演算的改进反向传播算法
反向传播是训练前馈深度神经网络中应用最广泛的算法之一。该算法需要一个可微的激活函数,并通过前馈深度神经网络从最后一层到第一层进行梯度计算。为了计算某一层的梯度,通过微积分的链式法则将各层的梯度组合起来。反向传播的最大缺点之一是它需要大量的训练时间。为了克服这个问题,本文提出了一种改进的基于乘法演算的反向传播算法。乘法微积分为经典微积分提供了另一种选择,它以乘法形式而不是加法和减法形式定义了新的导数和积分形式。通过各种实例对算法进行了性能分析,并与经典反向传播算法进行了比较。改进后的反向传播算法在较短的时间内收敛于解,从而在给定的案例研究中提供了快速的训练。该算法避免了局部极小问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Elektronika Ir Elektrotechnika
Elektronika Ir Elektrotechnika 工程技术-工程:电子与电气
CiteScore
2.40
自引率
7.70%
发文量
44
审稿时长
24 months
期刊介绍: The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible. The journal publishes regular papers dealing with the following areas, but not limited to: Electronics; Electronic Measurements; Signal Technology; Microelectronics; High Frequency Technology, Microwaves. Electrical Engineering; Renewable Energy; Automation, Robotics; Telecommunications Engineering.
期刊最新文献
Optimum Design of an 18-Pulse Phase Shifting Autotransformer Rectifier to Improve the Power Quality of Cascaded H-Bridge Motor Driver Classification of Resampled Pediatric Epilepsy EEG Data Using Artificial Neural Networks with Discrete Fourier Transforms Time-Based High-Pass, Low-Pass, Shelf, and Notch Filters Deep Learning Method for Power Side-Channel Analysis on Chip Leakages Design of a High-Performance Control Scheme for a Grid-Connected DFIG‐Based Wind Energy Conversion System Using Model Predictive Control and Hysteresis Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1