Economic and Energy Efficiency of Artificial Lighting Control Systems for Stairwells of Multistory Residential Buildings

Q2 Energy Journal of Daylighting Pub Date : 2020-04-13 DOI:10.15627/jd.2020.8
V. Burmaka, M. Tarasenko, Kateryna Kozak, V. Khomyshyn, Nataliia Sabat
{"title":"Economic and Energy Efficiency of Artificial Lighting Control Systems for Stairwells of Multistory Residential Buildings","authors":"V. Burmaka, M. Tarasenko, Kateryna Kozak, V. Khomyshyn, Nataliia Sabat","doi":"10.15627/jd.2020.8","DOIUrl":null,"url":null,"abstract":"The aim of the research is to determine the economic and energy efficiency usage of the artificial lighting control systems, with the help of astronomical relays and motion sensors, by various types of light sources for the stairwells (stair landings and staircases) of multistory residential buildings. The analysis of the residents’ monthly movement intensity of the 9-story residential buildings through the buildings entrance, doorways, and apartment doors was carried out. The economic and energy efficiency of use the artificial lighting control systems with an astronomical relays and motion sensors with different types of light sources was determined. Regardless of the light sources` type, the astronomical relay’s use leads to reduction in the electricity consumption of artificial lighting in 43.31% – 50.52%. Moreover, the motion sensors’ use on stairwells leads to a significant reduction in electrical energy consumption: in a case of halogen lamps – by 97.73%, compact fluorescent lamps – by 95.27%, light-emitting diodes lamps – by 93.98%. For the first time, the data of 9story residential buildings inhabitants’ traffic intensity through the first-floor doorway for the Ternopil city, Ukraine has been carried out. It has been proved the economic feasibility and energy efficiency of using combined lighting with an artificial lighting control system for stairwells of multistory residential buildings. © 2020 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":"7 1","pages":"93-106"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Daylighting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15627/jd.2020.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 4

Abstract

The aim of the research is to determine the economic and energy efficiency usage of the artificial lighting control systems, with the help of astronomical relays and motion sensors, by various types of light sources for the stairwells (stair landings and staircases) of multistory residential buildings. The analysis of the residents’ monthly movement intensity of the 9-story residential buildings through the buildings entrance, doorways, and apartment doors was carried out. The economic and energy efficiency of use the artificial lighting control systems with an astronomical relays and motion sensors with different types of light sources was determined. Regardless of the light sources` type, the astronomical relay’s use leads to reduction in the electricity consumption of artificial lighting in 43.31% – 50.52%. Moreover, the motion sensors’ use on stairwells leads to a significant reduction in electrical energy consumption: in a case of halogen lamps – by 97.73%, compact fluorescent lamps – by 95.27%, light-emitting diodes lamps – by 93.98%. For the first time, the data of 9story residential buildings inhabitants’ traffic intensity through the first-floor doorway for the Ternopil city, Ukraine has been carried out. It has been proved the economic feasibility and energy efficiency of using combined lighting with an artificial lighting control system for stairwells of multistory residential buildings. © 2020 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层住宅楼梯井人工照明控制系统的经济性与节能性
本研究的目的是在天文继电器和运动传感器的帮助下,通过各种类型的光源为多层住宅的楼梯井(楼梯平台和楼梯)确定人工照明控制系统的经济和能源效率使用。通过建筑物入口、门道和公寓门对9层住宅居民的月活动强度进行分析。确定了采用天文继电器和运动传感器的人工照明控制系统在不同类型光源下的经济性和能源效率。无论光源类型如何,天文继电器的使用使人工照明的用电量减少43.31% - 50.52%。此外,运动传感器在楼梯间的使用显著减少了电能消耗:在卤素灯的情况下,减少了97.73%,紧凑型荧光灯减少了95.27%,发光二极管灯减少了93.98%。首次对乌克兰捷尔诺波尔市9层居民楼居民通过一层门口的交通强度进行了数据采集。实践证明,多层住宅楼梯井采用组合照明与人工照明控制系统的经济可行性和节能效果。©2020作者。由solarlits.com出版。这是一篇基于CC BY许可(https://creativecommons.org/licenses/by/4.0/)的开放获取文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Daylighting
Journal of Daylighting Energy-Renewable Energy, Sustainability and the Environment
CiteScore
4.00
自引率
0.00%
发文量
18
审稿时长
10 weeks
期刊介绍: Journal of Daylighting is an international journal devoted to investigations of daylighting in buildings. It is the leading journal that publishes original research on all aspects of solar energy and lighting. Areas of special interest for this journal include, but are not limited to, the following: -Daylighting systems -Lighting simulation -Lighting designs -Luminaires -Lighting metrology and light quality -Lighting control -Building physics - lighting -Building energy modeling -Energy efficient buildings -Zero-energy buildings -Indoor environment quality -Sustainable solar energy systems -Application of solar energy sources in buildings -Photovoltaics systems -Building-integrated photovoltaics -Concentrator technology -Concentrator photovoltaic -Solar thermal
期刊最新文献
Synergistic Strategies: Comparing Energy Performance in Climate-Adaptive Building Envelopes for Iran's Cold Semi-Arid Climate Exploring Methodological Considerations: A Literature Review on How Lighting Affects the Sleep and Cognition in Healthy Older Adults Enhancing Visual Comfort and Energy Efficiency in Office Lighting Using Parametric-Generative Design Approach for Interactive Kinetic Louvers Electrochromic Glazing and Evaluation of Visual and Non-Visual Effects of Daylight: Simulation Studies for Brasilia – Brazil Analysing the Daylighting Performance of the Main Prayer-hall in the Great Mosque of Hama, Syria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1