Shadi Emam, Mehdi Nasrollahpour, John Patrick Allen, Yifan He, Hussein Hussein, Harsh Shailesh Shah, Fariborz Tavangarian, Nian-Xiang Sun
{"title":"A handheld electronic device with the potential to detect lung cancer biomarkers from exhaled breath","authors":"Shadi Emam, Mehdi Nasrollahpour, John Patrick Allen, Yifan He, Hussein Hussein, Harsh Shailesh Shah, Fariborz Tavangarian, Nian-Xiang Sun","doi":"10.1007/s10544-022-00638-8","DOIUrl":null,"url":null,"abstract":"<div><p>Lung cancer is the leading cause of cancer death in the United States. It has the lowest 5-year survival rate among the most common cancers and therefore, early diagnosis is critical to improve the survival rate. In this paper, a new handheld electronic device is proposed to detect nine lung cancer biomarkers in the exhaled breath. An electrochemical gas sensor was produced through deposition of a thin layer of graphene and Prussian blue on a chromium-modified silicon substrate. Selective binding of the analyte was formed by molecular imprinting polymer (MIP). Subsequent polymerization and removal of the analyte yielded a layer of a conductive polymer on top of the sensor containing molecularly imprinted cavities selective for the target molecule. The sensors were tested over 1–20 parts per trillion (ppt) level of concentration while the sensor resistance has been monitored as the sensors react to the analyte by resistance change. Pentane sensor was also tested for selectivity. A printed circuit board was designed to measure the resistance of each sensor and send the data to a developed application in smartphone through Bluetooth. This handheld device has the potential to be used as a diagnostic method in the near future.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"24 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-022-00638-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5
Abstract
Lung cancer is the leading cause of cancer death in the United States. It has the lowest 5-year survival rate among the most common cancers and therefore, early diagnosis is critical to improve the survival rate. In this paper, a new handheld electronic device is proposed to detect nine lung cancer biomarkers in the exhaled breath. An electrochemical gas sensor was produced through deposition of a thin layer of graphene and Prussian blue on a chromium-modified silicon substrate. Selective binding of the analyte was formed by molecular imprinting polymer (MIP). Subsequent polymerization and removal of the analyte yielded a layer of a conductive polymer on top of the sensor containing molecularly imprinted cavities selective for the target molecule. The sensors were tested over 1–20 parts per trillion (ppt) level of concentration while the sensor resistance has been monitored as the sensors react to the analyte by resistance change. Pentane sensor was also tested for selectivity. A printed circuit board was designed to measure the resistance of each sensor and send the data to a developed application in smartphone through Bluetooth. This handheld device has the potential to be used as a diagnostic method in the near future.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.