Home Appliance Identification for Nilm Systems Based on Deep Neural Networks

D. Penha, A. Castro
{"title":"Home Appliance Identification for Nilm Systems Based on Deep Neural Networks","authors":"D. Penha, A. Castro","doi":"10.5121/IJAIA.2018.9206","DOIUrl":null,"url":null,"abstract":"This paper presents the proposal for the identification of residential equipment in non-intrusive load monitoring systems. The system is based on a Convolutional Neural Network to classify residential equipment. As inputs to the system, transient power signal data obtained at the time an equipment is connected in a residence is used. The methodology was developed using data from a public database (REED) that presents data collected at a low frequency (1 Hz). The results obtained in the test database indicate that the proposed system is able to carry out the identification task, and presented satisfactory results when compared with the results already presented in the literature for the problem in question.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":"9 1","pages":"69-80"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5121/IJAIA.2018.9206","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJAIA.2018.9206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

This paper presents the proposal for the identification of residential equipment in non-intrusive load monitoring systems. The system is based on a Convolutional Neural Network to classify residential equipment. As inputs to the system, transient power signal data obtained at the time an equipment is connected in a residence is used. The methodology was developed using data from a public database (REED) that presents data collected at a low frequency (1 Hz). The results obtained in the test database indicate that the proposed system is able to carry out the identification task, and presented satisfactory results when compared with the results already presented in the literature for the problem in question.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的Nilm系统家电识别
本文提出了非侵入式负荷监测系统中住宅设备的识别方案。该系统基于卷积神经网络对住宅设备进行分类。作为系统的输入,使用在住宅设备连接时获得的暂态功率信号数据。该方法是使用来自公共数据库(REED)的数据开发的,该数据库以低频(1hz)收集数据。在测试数据库中获得的结果表明,所提出的系统能够执行识别任务,并且与文献中已经给出的问题结果相比,给出了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of Networks Generated by Kernel Growing Neural Gas Identifying Text Classification Failures in Multilingual AI-Generated Content Subverting Characters Stereotypes: Exploring the Role of AI in Stereotype Subversion Performance Evaluation of Block-Sized Algorithms for Majority Vote in Facial Recognition Sentiment Analysis in Indian Elections: Unraveling Public Perception of the Karnataka Elections With Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1