Assessment of the heterogeneous microstructure in the vicinity of a weld using thermographic measurements of the full‐field dissipative heat source
IF 1.8 3区 材料科学Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTINGStrainPub Date : 2021-12-22DOI:10.1111/str.12406
Palaniappan Jaya Seelan, F. Pierron, J. Dulieu‐Barton
{"title":"Assessment of the heterogeneous microstructure in the vicinity of a weld using thermographic measurements of the full‐field dissipative heat source","authors":"Palaniappan Jaya Seelan, F. Pierron, J. Dulieu‐Barton","doi":"10.1111/str.12406","DOIUrl":null,"url":null,"abstract":"During a material deformation process, part of the mechanical energy is dissipated as heat due to thermodynamically irreversible processes occurring at the microscale of the material. In particular, part of the plastic deformation energy is transformed into heat and is referred to as ‘intrinsic dissipation’ as it is intrinsic to the material behaviour. The intrinsic dissipation is a heat source that is sensitive to microstructural states which can be used to identify different microstructural regions resulting from material processing such as welding. To determine the heat source in a full‐field manner, it is necessary to use an infrared camera to measure any temperature rise in a specimen undergoing elastic cyclic loading. Unlike the intrinsic dissipative heat source, the temperature change is sensitive to thermal exchanges with the surroundings. Hence, the thermomechanical heat diffusion equation is used to determine the full‐field dissipative heat from the thermographic temperature measurement by implementing an image processing procedure based on least squares fitting enabled by specially devised experimental approach. The procedure is verified by deriving both the thermoelastic and dissipative heat sources from a ‘hole‐in‐plate’ specimen manufactured from 316L stainless steel, that is, a specimen with a known stress distribution. The approach is then applied to a 316L laser welded specimen, and it is demonstrated that the different microstructures resulting from the welding process can be identified with the procedure. The heterogeneous microstructure is confirmed using micrographs and further verified by the different stress–strain behaviour obtained for each microstructural region using digital image correlation (DIC).","PeriodicalId":51176,"journal":{"name":"Strain","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strain","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/str.12406","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
During a material deformation process, part of the mechanical energy is dissipated as heat due to thermodynamically irreversible processes occurring at the microscale of the material. In particular, part of the plastic deformation energy is transformed into heat and is referred to as ‘intrinsic dissipation’ as it is intrinsic to the material behaviour. The intrinsic dissipation is a heat source that is sensitive to microstructural states which can be used to identify different microstructural regions resulting from material processing such as welding. To determine the heat source in a full‐field manner, it is necessary to use an infrared camera to measure any temperature rise in a specimen undergoing elastic cyclic loading. Unlike the intrinsic dissipative heat source, the temperature change is sensitive to thermal exchanges with the surroundings. Hence, the thermomechanical heat diffusion equation is used to determine the full‐field dissipative heat from the thermographic temperature measurement by implementing an image processing procedure based on least squares fitting enabled by specially devised experimental approach. The procedure is verified by deriving both the thermoelastic and dissipative heat sources from a ‘hole‐in‐plate’ specimen manufactured from 316L stainless steel, that is, a specimen with a known stress distribution. The approach is then applied to a 316L laser welded specimen, and it is demonstrated that the different microstructures resulting from the welding process can be identified with the procedure. The heterogeneous microstructure is confirmed using micrographs and further verified by the different stress–strain behaviour obtained for each microstructural region using digital image correlation (DIC).
期刊介绍:
Strain is an international journal that contains contributions from leading-edge research on the measurement of the mechanical behaviour of structures and systems. Strain only accepts contributions with sufficient novelty in the design, implementation, and/or validation of experimental methodologies to characterize materials, structures, and systems; i.e. contributions that are limited to the application of established methodologies are outside of the scope of the journal. The journal includes papers from all engineering disciplines that deal with material behaviour and degradation under load, structural design and measurement techniques. Although the thrust of the journal is experimental, numerical simulations and validation are included in the coverage.
Strain welcomes papers that deal with novel work in the following areas:
experimental techniques
non-destructive evaluation techniques
numerical analysis, simulation and validation
residual stress measurement techniques
design of composite structures and components
impact behaviour of materials and structures
signal and image processing
transducer and sensor design
structural health monitoring
biomechanics
extreme environment
micro- and nano-scale testing method.