Analysis to determine the effect of mutations on binding to small chemical molecules

IF 0.9 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Bioinformatics and Computational Biology Pub Date : 2022-04-14 DOI:10.1142/S0219720022400030
T. Koshlan, K. Kulikov
{"title":"Analysis to determine the effect of mutations on binding to small chemical molecules","authors":"T. Koshlan, K. Kulikov","doi":"10.1142/S0219720022400030","DOIUrl":null,"url":null,"abstract":"In this paper, the authors present and describe, in detail, an original software-implemented numerical methodology used to determine the effect of mutations on binding to small chemical molecules, on the example of gefitinib, AMPPNP, CO-1686, ASP8273, erlotinib binding with EGFR protein, and imatinib binding with PPARgamma. Furthermore, the developed numerical approach makes it possible to determine the stability of a molecular complex, which consists of a protein and a small chemical molecule. The description of the software package that implements the presented algorithm is given in the website: https://binomlabs.com/.","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720022400030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the authors present and describe, in detail, an original software-implemented numerical methodology used to determine the effect of mutations on binding to small chemical molecules, on the example of gefitinib, AMPPNP, CO-1686, ASP8273, erlotinib binding with EGFR protein, and imatinib binding with PPARgamma. Furthermore, the developed numerical approach makes it possible to determine the stability of a molecular complex, which consists of a protein and a small chemical molecule. The description of the software package that implements the presented algorithm is given in the website: https://binomlabs.com/.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析以确定突变对与小化学分子结合的影响
在本文中,作者详细介绍了一种用于确定突变对与小化学分子结合的影响的原始软件实现的数值方法,例如吉非替尼、AMPPNP、CO-1686、ASP8273、埃洛替尼与EGFR蛋白结合以及伊马替尼与PPARγ结合。此外,所开发的数值方法使确定由蛋白质和小化学分子组成的分子复合物的稳定性成为可能。网站中给出了实现所提出算法的软件包的描述:https://binomlabs.com/.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bioinformatics and Computational Biology
Journal of Bioinformatics and Computational Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.10
自引率
0.00%
发文量
57
期刊介绍: The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information. The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.
期刊最新文献
Construction of a multi-tissue compound-target interaction network of Qingfei Paidu decoction in COVID-19 treatment based on deep learning and transcriptomic analysis. PCA-constrained multi-core matrix fusion network: A novel approach for cancer subtype identification. Gtie-Rt: A comprehensive graph learning model for predicting drugs targeting metabolic pathways in human. NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data. Construction of transcript regulation mechanism prediction models based on binding motif environment of transcription factor AoXlnR in Aspergillus oryzae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1