{"title":"A Unified Comparison of IRT-Based Effect Sizes for DIF Investigations","authors":"R. Philip Chalmers","doi":"10.1111/jedm.12347","DOIUrl":null,"url":null,"abstract":"<p>Several marginal effect size (ES) statistics suitable for quantifying the magnitude of differential item functioning (DIF) have been proposed in the area of item response theory; for instance, the Differential Functioning of Items and Tests (DFIT) statistics, signed and unsigned item difference in the sample statistics (SIDS, UIDS, NSIDS, and NUIDS), the standardized indices of impact, and the differential response functioning (DRF) statistics. However, the relationship between these proposed statistics has not been fully discussed, particularly with respect to population parameter definitions and recovery performance across independent samples. To address these issues, this article provides a unified presentation of competing DIF ES definitions and estimators, and evaluates the recovery efficacy of these competing estimators using a set of Monte Carlo simulation experiments. Statistical and inferential properties of the estimators are discussed, as well as future areas of research in this model-based area of bias quantification.</p>","PeriodicalId":47871,"journal":{"name":"Journal of Educational Measurement","volume":"60 2","pages":"318-350"},"PeriodicalIF":1.4000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Measurement","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jedm.12347","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
Several marginal effect size (ES) statistics suitable for quantifying the magnitude of differential item functioning (DIF) have been proposed in the area of item response theory; for instance, the Differential Functioning of Items and Tests (DFIT) statistics, signed and unsigned item difference in the sample statistics (SIDS, UIDS, NSIDS, and NUIDS), the standardized indices of impact, and the differential response functioning (DRF) statistics. However, the relationship between these proposed statistics has not been fully discussed, particularly with respect to population parameter definitions and recovery performance across independent samples. To address these issues, this article provides a unified presentation of competing DIF ES definitions and estimators, and evaluates the recovery efficacy of these competing estimators using a set of Monte Carlo simulation experiments. Statistical and inferential properties of the estimators are discussed, as well as future areas of research in this model-based area of bias quantification.
期刊介绍:
The Journal of Educational Measurement (JEM) publishes original measurement research, provides reviews of measurement publications, and reports on innovative measurement applications. The topics addressed will interest those concerned with the practice of measurement in field settings, as well as be of interest to measurement theorists. In addition to presenting new contributions to measurement theory and practice, JEM also serves as a vehicle for improving educational measurement applications in a variety of settings.