Thi-Nga Nguyen, Quang-Hung Tran, Ferial Terki, Clarence Charnay, Xavier Dumail, Corine Reibel, Guillaume Cazals, Gilles Valette, Christian Jay-Allemand, Luc P. R. Bidel
{"title":"Aggregation of magnetic nanoparticles functionalized with trans-resveratrol in aqueous solution","authors":"Thi-Nga Nguyen, Quang-Hung Tran, Ferial Terki, Clarence Charnay, Xavier Dumail, Corine Reibel, Guillaume Cazals, Gilles Valette, Christian Jay-Allemand, Luc P. R. Bidel","doi":"10.1186/s11671-023-03805-9","DOIUrl":null,"url":null,"abstract":"<div><p>In the framework of a protein–ligand-fishing strategy to identify proteins that bind to <i>trans-</i>resveratrol, a natural phenolic compound with pharmacological benefits, we have developed magnetic nanoparticles covalently linked to <i>trans</i>-resveratrol through three different derivatives and examined their aggregation behavior in aqueous solution. The monodispersed magnetic core (18 nm diameter) with its mesoporous silica shell (93 nm diameter) exhibited a notable superparamagnetic behavior useful for magnetic bioseparation. The hydrodynamic diameter, deduced from dynamic light scattering analysis, of the nanoparticle increased from 100 to 800 nm when the aqueous buffer changed from pH 10.0–3.0. A size polydispersion occurred from pH 7.0–3.0. In parallel, the value of the extinction cross section increased according to a negative power law of the UV wavelength. This was mainly due to light scattering by mesoporous silica, whereas the absorbance cross section remained very low in the 230–400 nm domain. The three types of resveratrol-grafted magnetic nanoparticles exhibited similar scattering properties, but their absorbance spectrum was consistent with the presence of <i>trans</i>-resveratrol. Their functionalization increased their negative zeta potential when pH increased from 3.0 to 10.0. The mesoporous nanoparticles were monodispersed in alkaline conditions, where their anionic surface strongly repulsed each other but aggregated progressively under van der Waals forces and hydrogen bonding when negative zeta potential decreased. The characterized results of nanoparticle behavior in aqueous solution provide critical insight for further study of nanoparticles with proteins in biological environment.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-023-03805-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-023-03805-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the framework of a protein–ligand-fishing strategy to identify proteins that bind to trans-resveratrol, a natural phenolic compound with pharmacological benefits, we have developed magnetic nanoparticles covalently linked to trans-resveratrol through three different derivatives and examined their aggregation behavior in aqueous solution. The monodispersed magnetic core (18 nm diameter) with its mesoporous silica shell (93 nm diameter) exhibited a notable superparamagnetic behavior useful for magnetic bioseparation. The hydrodynamic diameter, deduced from dynamic light scattering analysis, of the nanoparticle increased from 100 to 800 nm when the aqueous buffer changed from pH 10.0–3.0. A size polydispersion occurred from pH 7.0–3.0. In parallel, the value of the extinction cross section increased according to a negative power law of the UV wavelength. This was mainly due to light scattering by mesoporous silica, whereas the absorbance cross section remained very low in the 230–400 nm domain. The three types of resveratrol-grafted magnetic nanoparticles exhibited similar scattering properties, but their absorbance spectrum was consistent with the presence of trans-resveratrol. Their functionalization increased their negative zeta potential when pH increased from 3.0 to 10.0. The mesoporous nanoparticles were monodispersed in alkaline conditions, where their anionic surface strongly repulsed each other but aggregated progressively under van der Waals forces and hydrogen bonding when negative zeta potential decreased. The characterized results of nanoparticle behavior in aqueous solution provide critical insight for further study of nanoparticles with proteins in biological environment.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.