A. A. Tymbayeva, S. Mamyachenkov, S. Bannikova, O. S. Anisimova
{"title":"Studying the impact of alkaline sulfide leaching parameters upon the efficiency of arsenic recovery from copper skimmings of lead production","authors":"A. A. Tymbayeva, S. Mamyachenkov, S. Bannikova, O. S. Anisimova","doi":"10.17580/NFM.2020.02.03","DOIUrl":null,"url":null,"abstract":"The article is concerned with the problem of arsenic circulation as copper skimmings of lead production — the product of the lead bullion decopperization process at a metallurgical complex, uniting copper and lead plants. A brief overview of the methods of processing arsenic-containing middling products for the purpose of arsenic removal is given; the main advantages and disadvantages are indicated. The possibility of processing copper skimmings by the method of alkaline sulfide leaching with separation into arseniccontaining solution and lead-copper precipitate is studied. The results of the researches into the influence of temperature, process duration, solids content in the pulp, particle size, and the ratio of sodium hydroxide to elemental sulfur in the alkaline sulfide reagent on the process of alkaline sulfide leaching of copper skimmings af lead production are provided. Within the studied range of varied factors, the highest indexes of arsenic extraction into solution (85.04%) were achieved under the following conditions: temperature — 85 °C, duration — 4 hours, solids content in the pulp — 350 g/dm3, fraction (–0.08 mm), NaOH/S ratio = 100 g/100 g in 1 dm3 of the solution. The proposed method for processing copper skimmings will allow one to selectively isolate arsenic into the dump waste product during subsequent precipitation and separate contaminant from lead-copper cake, into which precious metals also pass. Such an approach provides the reduction of arsenic circulation between the lead and copper manufacturing facilities.","PeriodicalId":19653,"journal":{"name":"Nonferrous Metals","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonferrous Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17580/NFM.2020.02.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
The article is concerned with the problem of arsenic circulation as copper skimmings of lead production — the product of the lead bullion decopperization process at a metallurgical complex, uniting copper and lead plants. A brief overview of the methods of processing arsenic-containing middling products for the purpose of arsenic removal is given; the main advantages and disadvantages are indicated. The possibility of processing copper skimmings by the method of alkaline sulfide leaching with separation into arseniccontaining solution and lead-copper precipitate is studied. The results of the researches into the influence of temperature, process duration, solids content in the pulp, particle size, and the ratio of sodium hydroxide to elemental sulfur in the alkaline sulfide reagent on the process of alkaline sulfide leaching of copper skimmings af lead production are provided. Within the studied range of varied factors, the highest indexes of arsenic extraction into solution (85.04%) were achieved under the following conditions: temperature — 85 °C, duration — 4 hours, solids content in the pulp — 350 g/dm3, fraction (–0.08 mm), NaOH/S ratio = 100 g/100 g in 1 dm3 of the solution. The proposed method for processing copper skimmings will allow one to selectively isolate arsenic into the dump waste product during subsequent precipitation and separate contaminant from lead-copper cake, into which precious metals also pass. Such an approach provides the reduction of arsenic circulation between the lead and copper manufacturing facilities.
期刊介绍:
Its thematic plan covers all directions of scientific and technical development in non-ferrous metallurgy. The main journal sections include scientific-technical papers on heavy and light non-ferrous metals, noble metals and alloys, rare and rare earth metals, carbon materials, composites and multi-functional coatings, radioactive elements, nanostructured metals and materials, metal forming, automation etc. Theoretical and practical problems of ore mining and mineral processing, production and processing of non-ferrous metals, complex usage of ores, economics and production management, automation of metallurgical processes are widely observed in this journal. "Non-ferrous Metals" journal publishes the papers of well-known scientists and leading metallurgists, elucidates important scientific-technical problems of development of concentrating and metallurgical enterprises, scientific-research institutes and universities in the field of non-ferrous metallurgy, presents new scientific directions and technical innovations in this area. The readers can find in this journal both the articles with applied investigations and with results of fundamental researches that make the base for new technical developments. Publishing according to the approach APC (Article processing charge).