DISPO 4.0 | Simulation-Based Optimization of Stochastic Demand Calculation in Consumption-Based Material Planning in the Capital Goods Industry

IF 0.7 Q3 ENGINEERING, MULTIDISCIPLINARY TEHNICKI GLASNIK-TECHNICAL JOURNAL Pub Date : 2022-06-23 DOI:10.31803/tg-20220504151004
Alexander Schmid, Felix Kamhuber, Thomas Sobottka, W. Sihn
{"title":"DISPO 4.0 | Simulation-Based Optimization of Stochastic Demand Calculation in Consumption-Based Material Planning in the Capital Goods Industry","authors":"Alexander Schmid, Felix Kamhuber, Thomas Sobottka, W. Sihn","doi":"10.31803/tg-20220504151004","DOIUrl":null,"url":null,"abstract":"This paper presents a digital material planning approach, utilizing simulation-based optimization to select and parametrize article specific demand forecasting methods. Demand forecasts are the basis of material requirements planning in consumption-based material planning, and are an essential lever for efficient inventory and order calculation. Despite their acknowledged potential, digital tools for optimized demand calculation are still lacking in practice. Thus, the goal of the presented approach to provide an applicationoriented method to optimally select and parametrize state-of-the-art forecasting methods, based on product-specific demand data. In this approach, a rule-based selection heuristic is combined with static simulation of demand time-series and a metaheuristics-based optimization of forecasting parameters, to provide automatically optimized article-specific demand forecasts. Case studies for two companies in the capital goods industry evaluate and quantify the application potential. The results point to significantly improved, itemspecific demand planning","PeriodicalId":43419,"journal":{"name":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31803/tg-20220504151004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a digital material planning approach, utilizing simulation-based optimization to select and parametrize article specific demand forecasting methods. Demand forecasts are the basis of material requirements planning in consumption-based material planning, and are an essential lever for efficient inventory and order calculation. Despite their acknowledged potential, digital tools for optimized demand calculation are still lacking in practice. Thus, the goal of the presented approach to provide an applicationoriented method to optimally select and parametrize state-of-the-art forecasting methods, based on product-specific demand data. In this approach, a rule-based selection heuristic is combined with static simulation of demand time-series and a metaheuristics-based optimization of forecasting parameters, to provide automatically optimized article-specific demand forecasts. Case studies for two companies in the capital goods industry evaluate and quantify the application potential. The results point to significantly improved, itemspecific demand planning
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
资本货物行业基于消耗的物料计划中随机需求计算的仿真优化
本文提出了一种数字材料规划方法,利用基于模拟的优化来选择和参数化特定物品的需求预测方法。需求预测是基于消耗的物料计划中物料需求计划的基础,也是高效库存和订单计算的重要杠杆。尽管有公认的潜力,但用于优化需求计算的数字工具在实践中仍然缺乏。因此,所提出的方法的目标是提供一种面向应用的方法,根据产品特定的需求数据,优化选择和参数化最先进的预测方法。在这种方法中,基于规则的选择启发式与需求时间序列的静态模拟和基于元启发式的预测参数优化相结合,以提供自动优化的特定商品需求预测。资本品行业两家公司的案例研究评估并量化了应用潜力。结果表明,针对具体项目的需求规划得到了显著改进
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
TEHNICKI GLASNIK-TECHNICAL JOURNAL
TEHNICKI GLASNIK-TECHNICAL JOURNAL ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
8.30%
发文量
85
审稿时长
15 weeks
期刊最新文献
Standardization of Project Management Practices of Automotive Industry Suppliers Technical Characteristics of Incunabulum in Europe Face Detection and Recognition Using Raspberry PI Computer A Returnable Transport Item to Integrate Logistics 4.0 and Circular Economy in Pharma Supply Chains Modelling Freight Allocation and Transportation Lead-Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1