A Stochastic Approach for Analysis of Shadowing Effects in Urban Area

IF 0.5 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Advances in Electrical and Electronic Engineering Pub Date : 2022-04-01 DOI:10.15598/aeee.v20i1.4338
S. Japertas, V. Grimaila, R. Jankuniene, P. Tervydis
{"title":"A Stochastic Approach for Analysis of Shadowing Effects in Urban Area","authors":"S. Japertas, V. Grimaila, R. Jankuniene, P. Tervydis","doi":"10.15598/aeee.v20i1.4338","DOIUrl":null,"url":null,"abstract":". 5G networks are started to be deployed in urban areas in the dynamic spectrum sharing mode. Therefore, the analysis of Non-Line-of-Sight (NLOS) shadowing effects behind buildings of different heights becomes particularly important. The shadowing of GSM (900 MHz), UMTS (2100 MHz) and LTE (1800 MHz) technologies was investigated in the urban area. The results are examined by using the log-normal path loss model and four different stochastic equations, specifically: normal, log-normal, Rayleigh, and Nakagami. The results showed that the fluctuations of path losses in the urban area correspond to the model of log-normal path losses. However, path losses for individual buildings do not fit this model. Therefore, stochastic methods were used to analyse shadowing effects. A path loss model based on a differential stochastic equation was proposed. This model includes the following values: free space losses, path losses disturbance due to the shadowing effect, standard deviation σ , and a freely chosen parameter b . This model allows a very accurate estimate of the path losses of the three technologies. A clear correlation was observed between parameter b and standard deviation σ .","PeriodicalId":7268,"journal":{"name":"Advances in Electrical and Electronic Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Electrical and Electronic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15598/aeee.v20i1.4338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

. 5G networks are started to be deployed in urban areas in the dynamic spectrum sharing mode. Therefore, the analysis of Non-Line-of-Sight (NLOS) shadowing effects behind buildings of different heights becomes particularly important. The shadowing of GSM (900 MHz), UMTS (2100 MHz) and LTE (1800 MHz) technologies was investigated in the urban area. The results are examined by using the log-normal path loss model and four different stochastic equations, specifically: normal, log-normal, Rayleigh, and Nakagami. The results showed that the fluctuations of path losses in the urban area correspond to the model of log-normal path losses. However, path losses for individual buildings do not fit this model. Therefore, stochastic methods were used to analyse shadowing effects. A path loss model based on a differential stochastic equation was proposed. This model includes the following values: free space losses, path losses disturbance due to the shadowing effect, standard deviation σ , and a freely chosen parameter b . This model allows a very accurate estimate of the path losses of the three technologies. A clear correlation was observed between parameter b and standard deviation σ .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市阴影效应的随机分析方法
。5G网络开始以动态频谱共享方式在城市部署。因此,分析不同高度建筑物背后的非视距阴影效应就显得尤为重要。对GSM (900 MHz)、UMTS (2100 MHz)和LTE (1800 MHz)技术在城市地区的影响进行了研究。结果通过使用对数正态路径损失模型和四种不同的随机方程进行检验,特别是:正态,对数正态,瑞利和Nakagami。结果表明,城区路径损失的波动符合对数正态路径损失模型。然而,单个建筑物的路径损失并不符合这个模型。因此,采用随机方法分析阴影效应。提出了一种基于微分随机方程的路径损失模型。该模型包括以下值:自由空间损耗,路径损耗干扰由于阴影效应,标准差σ和一个自由选择的参数b。该模型可以非常准确地估计三种技术的路径损耗。参数b与标准差σ之间有明显的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Electrical and Electronic Engineering
Advances in Electrical and Electronic Engineering ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
33.30%
发文量
30
审稿时长
25 weeks
期刊最新文献
A HYBRID PREDICTIVE ARCHITECTURE FORMULATION USING DEEP LEARNING AND HISTOGRAM OF GRADIENTS FOR COMPOUND EMOTION RECOGNITION Self-Energy Recycling in DF Full-Duplex Relay Network: Security-Reliability Analysis Modeling, Identification and Validation of the Modified Magnetic Levitation Model ANALYSIS OF HARMONIC MITIGATION TECHNIQUES FOR CASCADED ASYMMETRIC INVERTERS OPTIMAL ROOFTOP PHOTOVOLTAIC SYSTEM PLACEMENT TO MINIMIZE MONTHLY USED ENERGY COSTS FOR HOUSEHOLDS IN VIETNAM’S CITIES AND TOWNS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1