Abigail L. Barker, J. Pawlak, S. Duke, R. Beffa, P. Tranel, Joe Wuerffel, B. Young, Aimone Porri, R. Liebl, R. Aponte, D. Findley, Michael Betz, J. Lerchl, S. Culpepper, K. Bradley, F. Dayan
{"title":"Discovery, Mode of Action, Resistance Mechanisms, and Plan of Action for Sustainable Use of Group 14 Herbicides","authors":"Abigail L. Barker, J. Pawlak, S. Duke, R. Beffa, P. Tranel, Joe Wuerffel, B. Young, Aimone Porri, R. Liebl, R. Aponte, D. Findley, Michael Betz, J. Lerchl, S. Culpepper, K. Bradley, F. Dayan","doi":"10.1017/wsc.2023.15","DOIUrl":null,"url":null,"abstract":"Abstract Protoporphyrinogen oxidase (PPO)-inhibiting herbicides remain an important and useful chemistry 60 yr after their first introduction. In this review, based on topics introduced at the Weed Science Society of America 2021 symposium titled “A History, Overview, and Plan of Action on PPO Inhibiting Herbicides,” we discuss the current state of PPO-inhibiting herbicides. Renewed interest in the PPO-inhibiting herbicides in recent years, due to increased use and increased cases of resistance, has led to refinements in knowledge regarding the mechanism of action of PPO inhibitors. Herein we discuss the importance of the two isoforms of PPO in plants, compile a current knowledge of target-site resistance mechanisms, examine non–target site resistance cases, and review crop selectivity mechanisms. Consistent and reproducible greenhouse screening and target-site mutation assays are necessary to effectively study and compare PPO-inhibitor resistance cases. To this end, we cover best practices in screening to accurately identify resistance ratios and properly interpret common screens for point mutations. The future of effective and sustainable PPO-inhibitor use relies on development of new chemistries that maintain activity on resistant biotypes and the promotion of responsible stewardship of PPO inhibitors both new and old. We present the biorational design of the new PPO inhibitor trifludimoxazin to highlight the future of PPO-inhibitor development and discuss the elements of sustainable weed control programs using PPO inhibitors, as well as how responsible stewardship can be incentivized. The sustained use of PPO inhibitors in future agriculture relies on the effective and timely communication from mode of action and resistance research to agronomists, Extension workers, and farmers.","PeriodicalId":23688,"journal":{"name":"Weed Science","volume":"71 1","pages":"173 - 188"},"PeriodicalIF":2.1000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/wsc.2023.15","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Protoporphyrinogen oxidase (PPO)-inhibiting herbicides remain an important and useful chemistry 60 yr after their first introduction. In this review, based on topics introduced at the Weed Science Society of America 2021 symposium titled “A History, Overview, and Plan of Action on PPO Inhibiting Herbicides,” we discuss the current state of PPO-inhibiting herbicides. Renewed interest in the PPO-inhibiting herbicides in recent years, due to increased use and increased cases of resistance, has led to refinements in knowledge regarding the mechanism of action of PPO inhibitors. Herein we discuss the importance of the two isoforms of PPO in plants, compile a current knowledge of target-site resistance mechanisms, examine non–target site resistance cases, and review crop selectivity mechanisms. Consistent and reproducible greenhouse screening and target-site mutation assays are necessary to effectively study and compare PPO-inhibitor resistance cases. To this end, we cover best practices in screening to accurately identify resistance ratios and properly interpret common screens for point mutations. The future of effective and sustainable PPO-inhibitor use relies on development of new chemistries that maintain activity on resistant biotypes and the promotion of responsible stewardship of PPO inhibitors both new and old. We present the biorational design of the new PPO inhibitor trifludimoxazin to highlight the future of PPO-inhibitor development and discuss the elements of sustainable weed control programs using PPO inhibitors, as well as how responsible stewardship can be incentivized. The sustained use of PPO inhibitors in future agriculture relies on the effective and timely communication from mode of action and resistance research to agronomists, Extension workers, and farmers.
期刊介绍:
Weed Science publishes original research and scholarship in the form of peer-reviewed articles focused on fundamental research directly related to all aspects of weed science in agricultural systems. Topics for Weed Science include:
- the biology and ecology of weeds in agricultural, forestry, aquatic, turf, recreational, rights-of-way and other settings, genetics of weeds
- herbicide resistance, chemistry, biochemistry, physiology and molecular action of herbicides and plant growth regulators used to manage undesirable vegetation
- ecology of cropping and other agricultural systems as they relate to weed management
- biological and ecological aspects of weed control tools including biological agents, and herbicide resistant crops
- effect of weed management on soil, air and water.