The reproducing kernel of $\mathcal H^2$ and radial eigenfunctions of the hyperbolic Laplacian

Pub Date : 2019-01-13 DOI:10.7146/MATH.SCAND.A-109674
M. Stoll
{"title":"The reproducing kernel of $\\mathcal H^2$ and radial eigenfunctions of the hyperbolic Laplacian","authors":"M. Stoll","doi":"10.7146/MATH.SCAND.A-109674","DOIUrl":null,"url":null,"abstract":"In the paper we characterize the reproducing kernel $\\mathcal {K}_{n,h}$ for the Hardy space $\\mathcal {H}^2$ of hyperbolic harmonic functions on the unit ball $\\mathbb {B}$ in $\\mathbb {R}^n$. Specifically we prove that \\[ \\mathcal {K}_{n,h}(x,y) = \\sum _{\\alpha =0}^\\infty S_{n,\\alpha }(\\lvert x\\rvert )S_{n,\\alpha }(\\lvert y\\rvert ) Z_\\alpha (x,y), \\] where the series converges absolutely and uniformly on $K\\times \\mathbb {B}$ for every compact subset $K$ of $\\mathbb {B}$. In the above, $S_{n,\\alpha }$ is a hypergeometric function and $Z_\\alpha $ is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that \\[ 0\\le \\mathcal K_{n,h}(x,y) \\le \\frac {C_n}{(1-2\\langle x,y\\rangle + \\lvert x \\rvert^2 \\lvert y \\rvert^2)^{n-1}}, \\] where $C_n$ is a constant depending only on $n$. It is known that the diagonal function $\\mathcal K_{n,h}(x,x)$ is a radial eigenfunction of the hyperbolic Laplacian $\\varDelta_h $ on $\\mathbb{B} $ with eigenvalue $\\lambda _2 = 8(n-1)^2$. The result for $n=4$ provides motivation that leads to an explicit characterization of all radial eigenfunctions of $\\varDelta_h $ on $\\mathbb{B} $. Specifically, if $g$ is a radial eigenfunction of $\\varDelta_h $ with eigenvalue $\\lambda _\\alpha = 4(n-1)^2\\alpha (\\alpha -1)$, then \\[ g(r) = g(0) \\frac {p_{n,\\alpha }(r^2)}{(1-r^2)^{(\\alpha -1)(n-1)}}, \\] where $p_{n,\\alpha }$ is again a hypergeometric function. If α is an integer, then $p_{n,\\alpha }(r^2)$ is a polynomial of degree $2(\\alpha -1)(n-1)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/MATH.SCAND.A-109674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the paper we characterize the reproducing kernel $\mathcal {K}_{n,h}$ for the Hardy space $\mathcal {H}^2$ of hyperbolic harmonic functions on the unit ball $\mathbb {B}$ in $\mathbb {R}^n$. Specifically we prove that \[ \mathcal {K}_{n,h}(x,y) = \sum _{\alpha =0}^\infty S_{n,\alpha }(\lvert x\rvert )S_{n,\alpha }(\lvert y\rvert ) Z_\alpha (x,y), \] where the series converges absolutely and uniformly on $K\times \mathbb {B}$ for every compact subset $K$ of $\mathbb {B}$. In the above, $S_{n,\alpha }$ is a hypergeometric function and $Z_\alpha $ is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that \[ 0\le \mathcal K_{n,h}(x,y) \le \frac {C_n}{(1-2\langle x,y\rangle + \lvert x \rvert^2 \lvert y \rvert^2)^{n-1}}, \] where $C_n$ is a constant depending only on $n$. It is known that the diagonal function $\mathcal K_{n,h}(x,x)$ is a radial eigenfunction of the hyperbolic Laplacian $\varDelta_h $ on $\mathbb{B} $ with eigenvalue $\lambda _2 = 8(n-1)^2$. The result for $n=4$ provides motivation that leads to an explicit characterization of all radial eigenfunctions of $\varDelta_h $ on $\mathbb{B} $. Specifically, if $g$ is a radial eigenfunction of $\varDelta_h $ with eigenvalue $\lambda _\alpha = 4(n-1)^2\alpha (\alpha -1)$, then \[ g(r) = g(0) \frac {p_{n,\alpha }(r^2)}{(1-r^2)^{(\alpha -1)(n-1)}}, \] where $p_{n,\alpha }$ is again a hypergeometric function. If α is an integer, then $p_{n,\alpha }(r^2)$ is a polynomial of degree $2(\alpha -1)(n-1)$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
$\mathcalH^2的再生核与双曲拉普拉斯算子的径向本征函数
在本文中,我们刻画了再生核$\mathcal{K}_对于单位球$\mathbb{B}$上的双曲调和函数的Hardy空间$\mathcal{h}^2$在$\mathbb{R}^n$中。具体来说,我们证明了\[\mathcal{K}_{n,h}(x,y)=\sum_{\alpha=0}^\infty S_{n、\alpha}(\lvert x\rvert)S_}、\alpa}(\ lvert y\ rvert)Z_\alpha(x,y),\]其中对于$\mathbb{B}$的每个紧子集$K$,级数在$K\times\mathbb{B}$上绝对一致收敛。在上文中,$S_{n,\alpha}$是超几何函数,$Z_\alpha$是α度球谐空间的再生核。本文证明了\[0\le\mathcal K_{n,h}(x,y)\le\frac{C_n}{(1-2\langle x,y\rangle+\lvert x\rvert ^2 \lvert y\rvert ^ 2)^{n-1}},其中$C_n$是一个仅依赖于$n$的常数。已知对角函数$\mathcal K_{n,h}(x,x)$是$\mathbb{B}$上双曲拉普拉斯算子$\varDelta_h$的径向本征函数,其特征值为$\lambda _2=8(n-1)^2$。$n=4$的结果提供了导致$\mathbb{B}$上$\varDelta_h$的所有径向本征函数的显式特征化的动机。具体地说,如果$g$是$\varDelta_h$的径向本征函数,其特征值为$\lambda_\alpha=4(n-1)^2 \alpha(\alpha-1)$,则\[g(r)=g(0)\frac{p_ n,\alpha}(r^2)}{(1-r^2)^{(\alpha-1)(n-1。如果α是整数,则$p_{n,\alpha}(r^2)$是次数为$2(\alpha-1)(n-1)$的多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1