CRISPR-Cas in Escherichia coli: regulation by H-NS, LeuO and temperature

IF 0.2 4区 生物学 Q4 BIOLOGY Periodicum Biologorum Pub Date : 2020-12-30 DOI:10.18054/PB.V121-122I3-4.10994
Dora Markulin
{"title":"CRISPR-Cas in Escherichia coli: regulation by H-NS, LeuO and temperature","authors":"Dora Markulin","doi":"10.18054/PB.V121-122I3-4.10994","DOIUrl":null,"url":null,"abstract":"CRISPR-Cas adaptive immune systems are present in many bacteria and archaea and provide protection against invading DNA such as phages and plasmids. These systems are very versatile and complex in their gene composition and genomic architecture. CRISPR-Cas systems are classified into 2 classes, 6 types and 33 subtypes although this number is not definitive and the research is ongoing. All CRISPR-Cas systems have been thoroughly investigated in order to better understand the mechanism of CRISPR immunity enabling its use as a tool in genome editing and other biotechnological applications. However, regulation of the CRISPR-Cas system is also very complex and still not fully understood; it must provide optimal protection without introducing harmful consequences to the host. In this review, we give an overview on the regulation of the CRISPR-Cas system Class 1 Type I-E in Escherichia coli with the emphasis on the role of temperature in the regulation of the CRISPR-Cas activity and the interplay of the key regulators H-NS and StpA repressors and LeuO antirepressor in regulation of cas gene expression and HtpG chaperone in maintaining functional levels of Cas3.","PeriodicalId":19950,"journal":{"name":"Periodicum Biologorum","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodicum Biologorum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.18054/PB.V121-122I3-4.10994","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

CRISPR-Cas adaptive immune systems are present in many bacteria and archaea and provide protection against invading DNA such as phages and plasmids. These systems are very versatile and complex in their gene composition and genomic architecture. CRISPR-Cas systems are classified into 2 classes, 6 types and 33 subtypes although this number is not definitive and the research is ongoing. All CRISPR-Cas systems have been thoroughly investigated in order to better understand the mechanism of CRISPR immunity enabling its use as a tool in genome editing and other biotechnological applications. However, regulation of the CRISPR-Cas system is also very complex and still not fully understood; it must provide optimal protection without introducing harmful consequences to the host. In this review, we give an overview on the regulation of the CRISPR-Cas system Class 1 Type I-E in Escherichia coli with the emphasis on the role of temperature in the regulation of the CRISPR-Cas activity and the interplay of the key regulators H-NS and StpA repressors and LeuO antirepressor in regulation of cas gene expression and HtpG chaperone in maintaining functional levels of Cas3.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大肠杆菌CRISPR-Cas:H-NS、LeuO和温度的调节
CRISPR-Cas适应性免疫系统存在于许多细菌和古菌中,并提供对入侵DNA(如噬菌体和质粒)的保护。这些系统在基因组成和基因组结构方面非常通用和复杂。CRISPR-Cas系统分为2类、6种类型和33种亚型,尽管这一数字尚不明确,研究仍在进行中。为了更好地了解CRISPR免疫的机制,使其能够作为基因组编辑和其他生物技术应用的工具,所有CRISPR-Cas系统都经过了彻底的研究。然而,CRISPR-Cas系统的调节也非常复杂,仍然没有完全理解;它必须在不给主机带来有害后果的情况下提供最佳保护。在这篇综述中,我们概述了CRISPR-Cas系统Class 1 Type I-E在大肠杆菌中的调节,重点介绍了温度在CRISPR-Cas活性调节中的作用,以及关键调节因子H-NS和StpA阻遏物和LeuO抗阻遏物在Cas基因表达调节中的相互作用,以及HtpG伴侣在维持Cas3功能水平中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Periodicum Biologorum
Periodicum Biologorum 生物-生物学
CiteScore
0.80
自引率
0.00%
发文量
16
审稿时长
6-12 weeks
期刊介绍: This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
期刊最新文献
Tissue optical clearing methods for microscopy: A review of their application in neuroscience Attendance of extracurricular activities in the field of natural sciences and the attractiveness of the content offered for extracurricular activities in biology in elementary schools Ultrastructural and immunofluorescence features of the epidermal cells and its secretory granules in the amphioxus Branchiostoma lanceolatum L. Application of thermal analysis methods in biology and medicine A young researcher’s guide to three-dimensional fluorescence microscopy of living cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1