{"title":"Modeling of Hysteresis in Single-Crystalline Barium Titanate with Allowance for Domain Structure Evolution","authors":"S. M. Lobanov, A. S. Semenov, A. Mamchic","doi":"10.1134/S1029959923020066","DOIUrl":null,"url":null,"abstract":"<p>The paper proposes a microstructural model of tetragonal single-crystalline barium titanate for analyzing how the state of its domain structure can influence the simulation accuracy of dielectric hysteresis curves with regard for domain interactions and for stress and electric field inhomogeneities in the single crystal. Hysteresis curves based on finite element homogenization are presented for all eight types of second-rank laminate domain patterns satisfying the compatibility conditions. It is shown that the properties of domain structures are substantially anisotropic under loading in different directions and that the dielectric hysteresis for different domain patterns differs greatly. The proposed model allows one to describe the effects of domain hardening and unloading nonlinearity. The results of calculations using the model agree well with experimental data at different cyclic load amplitudes.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"26 2","pages":"167 - 175"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959923020066","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The paper proposes a microstructural model of tetragonal single-crystalline barium titanate for analyzing how the state of its domain structure can influence the simulation accuracy of dielectric hysteresis curves with regard for domain interactions and for stress and electric field inhomogeneities in the single crystal. Hysteresis curves based on finite element homogenization are presented for all eight types of second-rank laminate domain patterns satisfying the compatibility conditions. It is shown that the properties of domain structures are substantially anisotropic under loading in different directions and that the dielectric hysteresis for different domain patterns differs greatly. The proposed model allows one to describe the effects of domain hardening and unloading nonlinearity. The results of calculations using the model agree well with experimental data at different cyclic load amplitudes.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.