Dorothy J. Vesper, Johnathan E. Moore, Harry M. Edenborn
{"title":"Tufa Deposition Dynamics in a Freshwater Karstic Stream Influenced by Warm Springs","authors":"Dorothy J. Vesper, Johnathan E. Moore, Harry M. Edenborn","doi":"10.1007/s10498-019-09356-9","DOIUrl":null,"url":null,"abstract":"<p>Sweet Springs Creek, located in the Valley and Ridge Province of the Appalachian Mountains in southeastern West Virginia and southwestern Virginia, USA, contains major fluvial tufa formations at the sites of localized fractures and faults. Sweet Springs Creek receives input from higher-temperature thermal springs of lower pH and higher sulfate concentration that differ significantly in chemical composition due to differences in the underlying geology. In this study, theoretical rates of tufa accumulation were compared with those measured on travertine tiles left in situ for 30?days during periods of high and low stream flow above and below the sites of major fluvial tufa formations. Consistent with the chemistry of the spring waters, observed and predicted tufa accumulation rates in the stream were low compared to others reported worldwide. Tufa formation rate estimates were consistently higher during seasonal conditions of low flow, warm temperatures, and higher pH that occurred in late summer, but net annual accumulation may still be zero or less due to formation erosion during periodic flooding events. Computer tomography analysis determined that the natural porosity of travertine tiles results in a total surface area 32% greater than that calculated based solely on tile dimensions, which may overestimate initial tufa accumulation rates in situ. Measured rates of carbonate deposition on travertine tiles were 1.6–82?× lower than rates predicted based on theoretical models, consistent with the hypothesis of rate reduction due to variable diffusional boundary layer limitations and variability in stream hydrology. The generation of loose, platy, and unconsolidated precipitate on tiles under geochemical conditions predicted to be the greatest for optimal tufa formation suggested that the precipitation of particulate calcite in the stream system may predominantly result in the formation of unconsolidated marl deposits.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"25 3-4","pages":"109 - 135"},"PeriodicalIF":1.7000,"publicationDate":"2019-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-019-09356-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10498-019-09356-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Sweet Springs Creek, located in the Valley and Ridge Province of the Appalachian Mountains in southeastern West Virginia and southwestern Virginia, USA, contains major fluvial tufa formations at the sites of localized fractures and faults. Sweet Springs Creek receives input from higher-temperature thermal springs of lower pH and higher sulfate concentration that differ significantly in chemical composition due to differences in the underlying geology. In this study, theoretical rates of tufa accumulation were compared with those measured on travertine tiles left in situ for 30?days during periods of high and low stream flow above and below the sites of major fluvial tufa formations. Consistent with the chemistry of the spring waters, observed and predicted tufa accumulation rates in the stream were low compared to others reported worldwide. Tufa formation rate estimates were consistently higher during seasonal conditions of low flow, warm temperatures, and higher pH that occurred in late summer, but net annual accumulation may still be zero or less due to formation erosion during periodic flooding events. Computer tomography analysis determined that the natural porosity of travertine tiles results in a total surface area 32% greater than that calculated based solely on tile dimensions, which may overestimate initial tufa accumulation rates in situ. Measured rates of carbonate deposition on travertine tiles were 1.6–82?× lower than rates predicted based on theoretical models, consistent with the hypothesis of rate reduction due to variable diffusional boundary layer limitations and variability in stream hydrology. The generation of loose, platy, and unconsolidated precipitate on tiles under geochemical conditions predicted to be the greatest for optimal tufa formation suggested that the precipitation of particulate calcite in the stream system may predominantly result in the formation of unconsolidated marl deposits.
期刊介绍:
We publish original studies relating to the geochemistry of natural waters and their interactions with rocks and minerals under near Earth-surface conditions. Coverage includes theoretical, experimental, and modeling papers dealing with this subject area, as well as papers presenting observations of natural systems that stress major processes. The journal also presents `letter''-type papers for rapid publication and a limited number of review-type papers on topics of particularly broad interest or current major controversy.