Structural health monitoring of 52-meter wind turbine blade: Detection of damage propagation during fatigue testing

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE DataCentric Engineering Pub Date : 2022-06-07 DOI:10.1017/dce.2022.20
M. A. Fremmelev, P. Ladpli, E. Orlowitz, L. Bernhammer, M. McGugan, K. Branner
{"title":"Structural health monitoring of 52-meter wind turbine blade: Detection of damage propagation during fatigue testing","authors":"M. A. Fremmelev, P. Ladpli, E. Orlowitz, L. Bernhammer, M. McGugan, K. Branner","doi":"10.1017/dce.2022.20","DOIUrl":null,"url":null,"abstract":"Abstract This work is concerned with damage detection in a commercial 52-meter wind turbine blade during fatigue testing. Different artificial damages are introduced in the blade in the form of laminate cracks. The lengths of the damages are increased manually, and they all eventually propagate and develop into delaminations during fatigue loading. Strain gauges, acoustic emission sensors, distributed accelerometers, and an active vibration monitoring system are used to track different physical responses in healthy and damaged states of the blade. Based on the recorded data, opportunities and limitations of the different sensing systems for blade structural health monitoring are investigated.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2022.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract This work is concerned with damage detection in a commercial 52-meter wind turbine blade during fatigue testing. Different artificial damages are introduced in the blade in the form of laminate cracks. The lengths of the damages are increased manually, and they all eventually propagate and develop into delaminations during fatigue loading. Strain gauges, acoustic emission sensors, distributed accelerometers, and an active vibration monitoring system are used to track different physical responses in healthy and damaged states of the blade. Based on the recorded data, opportunities and limitations of the different sensing systems for blade structural health monitoring are investigated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
52米风力涡轮机叶片的结构健康监测:疲劳试验期间损伤扩展的检测
本文研究了商用52米风力机叶片疲劳试验过程中的损伤检测问题。以层合裂纹的形式对叶片进行了不同的人为损伤。损伤的长度是人为增加的,在疲劳加载过程中,损伤最终都会扩展并发展成分层。应变计、声发射传感器、分布式加速度计和主动振动监测系统用于跟踪叶片在健康和受损状态下的不同物理响应。基于实测数据,分析了不同传感系统在叶片结构健康监测中的优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
DataCentric Engineering
DataCentric Engineering Engineering-General Engineering
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
12 weeks
期刊最新文献
Semantic 3D city interfaces—Intelligent interactions on dynamic geospatial knowledge graphs Optical network physical layer parameter optimization for digital backpropagation using Gaussian processes Finite element model updating with quantified uncertainties using point cloud data Evaluating probabilistic forecasts for maritime engineering operations Bottom-up forecasting: Applications and limitations in load forecasting using smart-meter data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1