{"title":"A numerical investigation on Contact Mechanics applications using eight-node hexahedral elements with underintegration techniques","authors":"M. Visintainer, E. Bittencourt, A. L. Braun","doi":"10.1590/1679-78256441","DOIUrl":null,"url":null,"abstract":"Abstract In the present work the performance of finite element formulations with different reduced integration strategies is evaluated for Contact Mechanics applications. One-point quadrature and selective reduced integration are utilized here using hourglass control to suppress volumetric and shear locking for materials with incompressible plastic behavior and bending-dominated problems. A corotational formulation is adopted to deal with physically and geometrically nonlinear analysis and the generalized-α method is employed for time integration in the nonlinear dynamic range. The contact formulation is based on the penalty method, where the classical Coulomb’s law is used considering a convected coordinate system for three-dimensional friction with large deformation and finite sliding. Contact problems involving deformable and rigid bodies, as well as static and dynamic analysis, are investigated and results are analyzed considering the different underintegration formulations proposed here.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1590/1679-78256441","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In the present work the performance of finite element formulations with different reduced integration strategies is evaluated for Contact Mechanics applications. One-point quadrature and selective reduced integration are utilized here using hourglass control to suppress volumetric and shear locking for materials with incompressible plastic behavior and bending-dominated problems. A corotational formulation is adopted to deal with physically and geometrically nonlinear analysis and the generalized-α method is employed for time integration in the nonlinear dynamic range. The contact formulation is based on the penalty method, where the classical Coulomb’s law is used considering a convected coordinate system for three-dimensional friction with large deformation and finite sliding. Contact problems involving deformable and rigid bodies, as well as static and dynamic analysis, are investigated and results are analyzed considering the different underintegration formulations proposed here.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.