Data driven efficient score tests for Poissonity

Pub Date : 2019-06-10 DOI:10.19195/0208-4147.39.1.8
T. Inglot
{"title":"Data driven efficient score tests for Poissonity","authors":"T. Inglot","doi":"10.19195/0208-4147.39.1.8","DOIUrl":null,"url":null,"abstract":"New data driven score tests for testing goodness of fit of the Poisson distribution are proposed. They are direct applications of the general construction of data driven goodness-of-fit tests for composite hypotheses developed in Inglot et al. 1997. By a simulation study it is shown that these tests perform almost equally well as the best known solutions for standard alternatives and outperform them for more difficult alternatives.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19195/0208-4147.39.1.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

New data driven score tests for testing goodness of fit of the Poisson distribution are proposed. They are direct applications of the general construction of data driven goodness-of-fit tests for composite hypotheses developed in Inglot et al. 1997. By a simulation study it is shown that these tests perform almost equally well as the best known solutions for standard alternatives and outperform them for more difficult alternatives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
数据驱动的Poissonity有效分数测试
提出了一种新的数据驱动分数检验泊松分布拟合优度的方法。它们是Inglot等人在1997年开发的复合假设的数据驱动拟合优度检验的一般构造的直接应用。通过模拟研究表明,这些测试在标准替代方案中表现得几乎与最知名的解决方案一样好,并且在更困难的替代方案中表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1