V. I. Kolesnikov, O. V. Kudryakov, V. N. Varavka, A. V. Sidashov, I. V. Kolesnikov, D. S. Manturov, A. I. Voropaev
{"title":"Structural-Phase State and Properties of Cr-Al-Si-N Coatings Obtained by Vacuum Arc Plasma Deposition","authors":"V. I. Kolesnikov, O. V. Kudryakov, V. N. Varavka, A. V. Sidashov, I. V. Kolesnikov, D. S. Manturov, A. I. Voropaev","doi":"10.1134/S1029959923020029","DOIUrl":null,"url":null,"abstract":"<p>This study discusses CrAlSiN coatings obtained by vacuum arc plasma deposition. The structural and compositional parameters that are responsible for the most essential coating properties are identified. The structural morphology, elemental distribution, and phase composition of the coatings are investigated. The physicomechanical, adhesive and tribological characteristics are determined. Coatings were deposited on substrates of nitrided and carburized structural steels widely used in mechanical engineering. The coating properties are determined and compared with the corresponding surface properties of the standard uncoated specimen. The coating thickness for the experimental specimens was 0.82–1.18 µm. A comparative analysis of the coating phase composition is carried out using X-ray photoelectron spectroscopy (XPS) and thermodynamic calculations with Termo-Calc software. It is shown and proved experimentally that ion plasma coatings are nonequilibrium. In addition, CrAlSiN coatings significantly increase the mechanical characteristics of the material, such as hardness and resistance to elastic and plastic deformation, and adhere well to the substrate surface. In tribological tests, CrAlSiN coatings reduce the wear rate by a factor of 2–4 compared to nitrided steel and by an order of magnitude compared to carburized steel. These high properties are also attributed to the nonequilibrium structural-phase state of the coating. The obtained results indicate that vacuum arc plasma CrAlSiN coatings can be used as wear resistant protective coatings, including under friction conditions.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"26 2","pages":"126 - 136"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959923020029","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
This study discusses CrAlSiN coatings obtained by vacuum arc plasma deposition. The structural and compositional parameters that are responsible for the most essential coating properties are identified. The structural morphology, elemental distribution, and phase composition of the coatings are investigated. The physicomechanical, adhesive and tribological characteristics are determined. Coatings were deposited on substrates of nitrided and carburized structural steels widely used in mechanical engineering. The coating properties are determined and compared with the corresponding surface properties of the standard uncoated specimen. The coating thickness for the experimental specimens was 0.82–1.18 µm. A comparative analysis of the coating phase composition is carried out using X-ray photoelectron spectroscopy (XPS) and thermodynamic calculations with Termo-Calc software. It is shown and proved experimentally that ion plasma coatings are nonequilibrium. In addition, CrAlSiN coatings significantly increase the mechanical characteristics of the material, such as hardness and resistance to elastic and plastic deformation, and adhere well to the substrate surface. In tribological tests, CrAlSiN coatings reduce the wear rate by a factor of 2–4 compared to nitrided steel and by an order of magnitude compared to carburized steel. These high properties are also attributed to the nonequilibrium structural-phase state of the coating. The obtained results indicate that vacuum arc plasma CrAlSiN coatings can be used as wear resistant protective coatings, including under friction conditions.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.