{"title":"Granite rock towers shaped by mesh-like joint sets, which formed in the shallower portion of a granite body during cooling at depth","authors":"Masahiro Chigira, Hironori Kato","doi":"10.1111/iar.12484","DOIUrl":null,"url":null,"abstract":"<p>Granite is fractured according to the stress state during the cooling stage, providing predispositions for later topographic evolution. This study clarified that triangular mesh-like joints can be made during granite cooling and that they can become the structural causes for the formation of rock towers and corestones on the ground. Tengu rock, which consists of rock towers and granite corestones in Hiroshima, was investigated using an unmanned air vehicle. The rock towers were shaped by high-angle mesh-like joints, which were likely made during the cooling of the granite and are dominated by three joint sets. All the joint sets have sharp planar surfaces, which suggests that they are brittle fractures. One joint set is cut by the other two joint sets, frequently accompanies aplite and quartz veins and is developed in the whole exposed granite; this set likely formed first during cooling and then was penetrated by aplite from depth. The other two joint sets are high-angle conjugate joint sets, are limited to the shallower portion of the granite pluton and do not extend deeper, which strongly suggests that they formed in a rapidly cooled shallower portion of the pluton, probably near its roof. These three joint sets form rock columns with parallelogram cross-sections, in which incipient corestones were made. Subsurface weathering along the joints and subsequent exhumation of the weathering products formed the present rock towers and corestones only in the shallower portion of the granite.</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":"32 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/iar.12484","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.12484","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Granite is fractured according to the stress state during the cooling stage, providing predispositions for later topographic evolution. This study clarified that triangular mesh-like joints can be made during granite cooling and that they can become the structural causes for the formation of rock towers and corestones on the ground. Tengu rock, which consists of rock towers and granite corestones in Hiroshima, was investigated using an unmanned air vehicle. The rock towers were shaped by high-angle mesh-like joints, which were likely made during the cooling of the granite and are dominated by three joint sets. All the joint sets have sharp planar surfaces, which suggests that they are brittle fractures. One joint set is cut by the other two joint sets, frequently accompanies aplite and quartz veins and is developed in the whole exposed granite; this set likely formed first during cooling and then was penetrated by aplite from depth. The other two joint sets are high-angle conjugate joint sets, are limited to the shallower portion of the granite pluton and do not extend deeper, which strongly suggests that they formed in a rapidly cooled shallower portion of the pluton, probably near its roof. These three joint sets form rock columns with parallelogram cross-sections, in which incipient corestones were made. Subsurface weathering along the joints and subsequent exhumation of the weathering products formed the present rock towers and corestones only in the shallower portion of the granite.
期刊介绍:
Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication.
Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.