{"title":"Olayla İlgili Potansiyel Sinyalleri Kullanarak Şizofreninin Analizi ve Sınıflandırılması","authors":"Anıl Aksöz, Doğukan Akyüz, Furkan Bayir, Nevzat Yildiz, Fırat Orhanbulucu, Fatma Latifoğlu","doi":"10.53070/bbd.1173093","DOIUrl":null,"url":null,"abstract":"Şizofreni (SZ), dünya çapında birçok insanı etkileyen ve erken teşhis ve tedavi edilmediği takdirde ölüme neden olan nöropsikiyatrik bir hastalıktır. Erken tanı için yaygın olarak kullanılan yöntemlerden biri elektroensefalografidir (EEG). Sinyal işleme ve makine öğrenme yöntemlerinin EEG sinyallerine uygulanması, SZ hastalığını belirlemek isteyen uzmanlara ve araştırmacılara destek olabilir. Bu çalışmada, SZ hastası ve sağlıklı kontrol grubuna işitsel uyaranların gönderilmesi sonucunda kaydedilen EEG sinyallerinden olaya bağlı potansiyel (OİP) sinyalleri elde edilmiştir. Bu sinyallerden öznitelikler olarak P300 genlik-gecikme, hjorth parametreleri ve entropi değerleri hesaplanmıştır. Elde edilen özellikler, SZ hastalarını sağlıklı kontrol grubundan ayırt etmek için Destek Vektör Makineleri (DVM), K-En Yakın Komşu (KEYK) ve Yapay Sinir Ağları (YSA) sınıflandırıcıları ile değerlendirildi. Bu çalışmada en başarılı sonuç %93,9 doğruluk oranı ile YSA sınıflandırıcısında elde edilmiştir.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science-AGH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53070/bbd.1173093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Şizofreni (SZ), dünya çapında birçok insanı etkileyen ve erken teşhis ve tedavi edilmediği takdirde ölüme neden olan nöropsikiyatrik bir hastalıktır. Erken tanı için yaygın olarak kullanılan yöntemlerden biri elektroensefalografidir (EEG). Sinyal işleme ve makine öğrenme yöntemlerinin EEG sinyallerine uygulanması, SZ hastalığını belirlemek isteyen uzmanlara ve araştırmacılara destek olabilir. Bu çalışmada, SZ hastası ve sağlıklı kontrol grubuna işitsel uyaranların gönderilmesi sonucunda kaydedilen EEG sinyallerinden olaya bağlı potansiyel (OİP) sinyalleri elde edilmiştir. Bu sinyallerden öznitelikler olarak P300 genlik-gecikme, hjorth parametreleri ve entropi değerleri hesaplanmıştır. Elde edilen özellikler, SZ hastalarını sağlıklı kontrol grubundan ayırt etmek için Destek Vektör Makineleri (DVM), K-En Yakın Komşu (KEYK) ve Yapay Sinir Ağları (YSA) sınıflandırıcıları ile değerlendirildi. Bu çalışmada en başarılı sonuç %93,9 doğruluk oranı ile YSA sınıflandırıcısında elde edilmiştir.