Actuator fault reconstruction using FDI system based on sliding mode observers

Q2 Engineering INCAS Bulletin Pub Date : 2022-12-02 DOI:10.13111/2066-8201.2022.14.4.13
Florin-Adrian Stancu, A. Stoica
{"title":"Actuator fault reconstruction using FDI system based on sliding mode observers","authors":"Florin-Adrian Stancu, A. Stoica","doi":"10.13111/2066-8201.2022.14.4.13","DOIUrl":null,"url":null,"abstract":"Interplanetary space missions require spacecraft autonomy in order to fulfill the mission objective. The fault detection and isolation (FDI) system increases the level of autonomy and can ensure the safety of the spacecraft by detecting and isolating potential faults before they become critical. The proposed FDI system is based on an innovative bank of SMOs (sliding mode observers), designed for different fault scenarios cases. The FDI system design aims to detect and isolate actuators and measurement units’ faults used by the satellite control system and considers the nonlinear model of the satellite dynamics. This approach gives the possibility of fault reconstruction based on the information provided by an equivalent injection signal, allowing to reconstruct external perturbances and faults. The SMO chattering phenomenon is avoided by using the pseudo-sliding function, being a linear approximation of the signum function, which gives the possibility of using the equivalent injection signal for fault reconstruction purposes. The proposed fault reconstruction methodology is illustrated by a case study for a 6U Cubesat.","PeriodicalId":37556,"journal":{"name":"INCAS Bulletin","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INCAS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13111/2066-8201.2022.14.4.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Interplanetary space missions require spacecraft autonomy in order to fulfill the mission objective. The fault detection and isolation (FDI) system increases the level of autonomy and can ensure the safety of the spacecraft by detecting and isolating potential faults before they become critical. The proposed FDI system is based on an innovative bank of SMOs (sliding mode observers), designed for different fault scenarios cases. The FDI system design aims to detect and isolate actuators and measurement units’ faults used by the satellite control system and considers the nonlinear model of the satellite dynamics. This approach gives the possibility of fault reconstruction based on the information provided by an equivalent injection signal, allowing to reconstruct external perturbances and faults. The SMO chattering phenomenon is avoided by using the pseudo-sliding function, being a linear approximation of the signum function, which gives the possibility of using the equivalent injection signal for fault reconstruction purposes. The proposed fault reconstruction methodology is illustrated by a case study for a 6U Cubesat.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于滑模观测器的FDI系统执行器故障重构
行星际空间任务需要航天器的自主性,以实现任务目标。故障检测与隔离(FDI)系统通过在潜在故障发生前对其进行检测和隔离,提高了航天器的自主性,保证了航天器的安全。所提出的FDI系统基于一个创新的SMOs(滑模观测器)库,设计用于不同的故障场景。FDI系统设计的目的是检测和隔离卫星控制系统使用的作动器和测量单元的故障,并考虑卫星动力学的非线性模型。这种方法提供了基于等效注入信号提供的信息的故障重建的可能性,允许重建外部扰动和故障。伪滑动函数作为sgum函数的线性逼近,避免了SMO颤振现象,从而为利用等效注入信号进行故障重建提供了可能。以6U立方体卫星为例,对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
INCAS Bulletin
INCAS Bulletin Engineering-Aerospace Engineering
自引率
0.00%
发文量
50
审稿时长
8 weeks
期刊介绍: INCAS BULLETIN is a scientific quartely journal published by INCAS – National Institute for Aerospace Research “Elie Carafoli” (under the aegis of The Romanian Academy) Its current focus is the aerospace field, covering fluid mechanics, aerodynamics, flight theory, aeroelasticity, structures, applied control, mechatronics, experimental aerodynamics, computational methods. All submitted papers are peer-reviewed. The journal will publish reports and short research original papers of substance. Unique features distinguishing this journal: R & D reports in aerospace sciences in Romania The INCAS BULLETIN of the National Institute for Aerospace Research "Elie Carafoli" includes the following sections: 1) FULL PAPERS. -Strength of materials, elasticity, plasticity, aeroelasticity, static and dynamic analysis of structures, vibrations and impact. -Systems, mechatronics and control in aerospace. -Materials and tribology. -Kinematics and dynamics of mechanisms, friction, lubrication. -Measurement technique. -Aeroacoustics, ventilation, wind motors. -Management in Aerospace Activities. 2) TECHNICAL-SCIENTIFIC NOTES and REPORTS. Includes: case studies, technical-scientific notes and reports on published areas. 3) INCAS NEWS. Promote and emphasise INCAS technical base and achievements. 4) BOOK REVIEWS.
期刊最新文献
Quadcopter-Rover System for Environmental Survey Applications Particularities of Rotorcraft in Dealing with Advanced Controllers Relationship between mechanical behavior and process factors in friction stir welding aluminum alloys Extending structural optimization capabilities of FEA softs according to machine learning principles Analyzes regarding aviation fuels parameters use on jet engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1