Large deviations of Kac’s conservative particle system and energy nonconserving solutions to the Boltzmann equation: A counterexample to the predicted rate function
{"title":"Large deviations of Kac’s conservative particle system and energy nonconserving solutions to the Boltzmann equation: A counterexample to the predicted rate function","authors":"Daniel Heydecker","doi":"10.1214/22-aap1852","DOIUrl":null,"url":null,"abstract":"We consider the dynamic large deviation behaviour of Kac's collisional process for a range of initial conditions including equilibrium. We prove an upper bound with a rate function of the type which has previously been found for kinetic large deviation problems, and a matching lower bound restricted to a class of sufficiently good paths. However, we are able to show by an explicit counterexample that the predicted rate function does not extend to a global lower bound: even though the particle system almost surely conserves energy, large deviation behaviour includes solutions to the Boltzmann equation which do not conserve energy, as found by Lu and Wennberg, and these occur strictly more rarely than predicted by the proposed rate function. At the level of the particle system, this occurs because a macroscopic proportion of energy can concentrate in $\\mathfrak{o}(N)$ particles with probability $e^{-\\mathcal{O}(N)}$.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1852","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10
Abstract
We consider the dynamic large deviation behaviour of Kac's collisional process for a range of initial conditions including equilibrium. We prove an upper bound with a rate function of the type which has previously been found for kinetic large deviation problems, and a matching lower bound restricted to a class of sufficiently good paths. However, we are able to show by an explicit counterexample that the predicted rate function does not extend to a global lower bound: even though the particle system almost surely conserves energy, large deviation behaviour includes solutions to the Boltzmann equation which do not conserve energy, as found by Lu and Wennberg, and these occur strictly more rarely than predicted by the proposed rate function. At the level of the particle system, this occurs because a macroscopic proportion of energy can concentrate in $\mathfrak{o}(N)$ particles with probability $e^{-\mathcal{O}(N)}$.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.