{"title":"An enhanced primal-simplex based tardos' algorithm for linear optimization","authors":"S. Mizuno, Noriyoshi Sukegawa, A. Deza","doi":"10.15807/JORSJ.61.186","DOIUrl":null,"url":null,"abstract":"While the algorithmic complexity is in general worse than the one of Tardos’ original algorithms, the authors, motivated by the practicality of such methods, recently proposed a simplex-based variant that is strongly polynomial if the coefficient matrix is totally unimodular and the auxiliary problems are nondegenerate. In this paper, we introduce a slight modification that circumvents the determination of the largest sub-determinant while keeping the same theoretical performance. Assuming that the coefficient matrix is integer-valued and the auxiliary problems are non-degenerate, the proposed algorithm is polynomial in the dimension of the input data and the largest absolute value of a sub-determinant of the coefficient matrix.","PeriodicalId":51107,"journal":{"name":"Journal of the Operations Research Society of Japan","volume":"61 1","pages":"186-196"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15807/JORSJ.61.186","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/JORSJ.61.186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
While the algorithmic complexity is in general worse than the one of Tardos’ original algorithms, the authors, motivated by the practicality of such methods, recently proposed a simplex-based variant that is strongly polynomial if the coefficient matrix is totally unimodular and the auxiliary problems are nondegenerate. In this paper, we introduce a slight modification that circumvents the determination of the largest sub-determinant while keeping the same theoretical performance. Assuming that the coefficient matrix is integer-valued and the auxiliary problems are non-degenerate, the proposed algorithm is polynomial in the dimension of the input data and the largest absolute value of a sub-determinant of the coefficient matrix.
期刊介绍:
The journal publishes original work and quality reviews in the field of operations research and management science to OR practitioners and researchers in two substantive categories: operations research methods; applications and practices of operations research in industry, public sector, and all areas of science and engineering.