Shanshan Wan, Zhuo Chen, Cheng Lyu, Ruofan Li, Yuntao Yue, Y. Liu
{"title":"Research on disaster information dissemination based on social sensor networks","authors":"Shanshan Wan, Zhuo Chen, Cheng Lyu, Ruofan Li, Yuntao Yue, Y. Liu","doi":"10.1177/15501329221080666","DOIUrl":null,"url":null,"abstract":"Sudden disaster events are usually unpredictable and uncontrollable, and how to achieve efficient and accurate disaster information dissemination is an important topic for society security. At present, social sensor networks which integrate human mobile sensors and traditional physical sensors are widely used in dealing with emergencies. Previous studies mainly focused on the impact of human mobility patterns on social sensor networks. In this article, based on the inherent autonomy property of human individuals, we propose a social sensor information dissemination model, which mainly focuses on the impact of the individual characteristics, social characteristics, and group information dissemination mode on social sensor networks. Specifically, the human sensor model is first constructed based on the inherent social and psychological attributes of human autonomy. Then, various information dissemination models such as one-to-one, one-to-many, and peer-to-peer are proposed by considering different transmission media and human interaction preferences. We simulate the environment of information dissemination in disaster events based on the NetLogo platform. Evaluation matrix is applied to test the performance of social sensor information dissemination model, such as event dissemination coverage, event delivery time, and event delivery rate. With the comparisons to epidemic model, social sensor information dissemination model shows excellent performance in improving the efficiency and accuracy of information transmission in disaster events.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221080666","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Sudden disaster events are usually unpredictable and uncontrollable, and how to achieve efficient and accurate disaster information dissemination is an important topic for society security. At present, social sensor networks which integrate human mobile sensors and traditional physical sensors are widely used in dealing with emergencies. Previous studies mainly focused on the impact of human mobility patterns on social sensor networks. In this article, based on the inherent autonomy property of human individuals, we propose a social sensor information dissemination model, which mainly focuses on the impact of the individual characteristics, social characteristics, and group information dissemination mode on social sensor networks. Specifically, the human sensor model is first constructed based on the inherent social and psychological attributes of human autonomy. Then, various information dissemination models such as one-to-one, one-to-many, and peer-to-peer are proposed by considering different transmission media and human interaction preferences. We simulate the environment of information dissemination in disaster events based on the NetLogo platform. Evaluation matrix is applied to test the performance of social sensor information dissemination model, such as event dissemination coverage, event delivery time, and event delivery rate. With the comparisons to epidemic model, social sensor information dissemination model shows excellent performance in improving the efficiency and accuracy of information transmission in disaster events.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.