Variable selection and nonlinear effect discovery in partially linear mixture cure rate models

A. Masud, Zhangsheng Yu, W. Tu
{"title":"Variable selection and nonlinear effect discovery in partially linear mixture cure rate models","authors":"A. Masud, Zhangsheng Yu, W. Tu","doi":"10.1080/24709360.2019.1663665","DOIUrl":null,"url":null,"abstract":"Survival data with long-term survivors are common in clinical investigations. Such data are often analyzed with mixture cure rate models. Existing model selection procedures do not readily discriminate nonlinear effects from linear ones. Here, we propose a procedure for accommodating nonlinear effects and for determining the cure rate model composition. The procedure is based on the Least Absolute Shrinkage and Selection Operators (LASSO). Specifically, by partitioning each variable into linear and nonlinear components, we use LASSO to select linear and nonlinear components. Operationally, we model the nonlinear components by cubic B-splines. The procedure adds to the existing variable selection methods an ability to discover hidden nonlinear effects in a cure rate model setting. To implement, we ascertain the maximum likelihood estimates by using an Expectation Maximization (EM) algorithm. We conduct an extensive simulation study to assess the operating characteristics of the selection procedure. We illustrate the use of the method by analyzing data from a real clinical study.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"3 1","pages":"156 - 177"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2019.1663665","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2019.1663665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3

Abstract

Survival data with long-term survivors are common in clinical investigations. Such data are often analyzed with mixture cure rate models. Existing model selection procedures do not readily discriminate nonlinear effects from linear ones. Here, we propose a procedure for accommodating nonlinear effects and for determining the cure rate model composition. The procedure is based on the Least Absolute Shrinkage and Selection Operators (LASSO). Specifically, by partitioning each variable into linear and nonlinear components, we use LASSO to select linear and nonlinear components. Operationally, we model the nonlinear components by cubic B-splines. The procedure adds to the existing variable selection methods an ability to discover hidden nonlinear effects in a cure rate model setting. To implement, we ascertain the maximum likelihood estimates by using an Expectation Maximization (EM) algorithm. We conduct an extensive simulation study to assess the operating characteristics of the selection procedure. We illustrate the use of the method by analyzing data from a real clinical study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
部分线性混合固化率模型的变量选择与非线性效应发现
长期幸存者的生存数据在临床调查中很常见。此类数据通常使用混合物固化率模型进行分析。现有的模型选择程序不容易区分非线性效应和线性效应。在这里,我们提出了一种适应非线性效应和确定固化率模型组成的程序。该过程基于最小绝对收缩和选择算子(LASSO)。具体来说,通过将每个变量划分为线性和非线性分量,我们使用LASSO来选择线性和非线性组件。在操作上,我们使用三次B样条对非线性分量进行建模。该程序为现有的变量选择方法增加了发现治愈率模型设置中隐藏的非线性影响的能力。为了实现,我们通过使用期望最大化(EM)算法来确定最大似然估计。我们进行了广泛的模拟研究,以评估选择程序的操作特征。我们通过分析真实临床研究的数据来说明该方法的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
期刊最新文献
Adjusting for bias due to measurement error in functional quantile regression models with error-prone functional and scalar covariates. The analysis of Salmonella’s ability to survive in different external environments Notice of duplicate publication: public transportation network scan for rapid surveillance Global Odds Model with Proportional Odds and Trend Odds Applied to Gross and Microscopic Brain Infarcts. Flexible and robust procedure for subgroup inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1