P. Safaval, Seyed Ahmad Neshaei, Peyman Heidarian, Mehrdad Khanmohammadi, Fariba Ghanbarpour, Zahra Azizi, S. Behzadi, A. Stefanakis
{"title":"Studying the effect of Anzali port breakwaters on sedimentation in Anzali wetland using remote sensing","authors":"P. Safaval, Seyed Ahmad Neshaei, Peyman Heidarian, Mehrdad Khanmohammadi, Fariba Ghanbarpour, Zahra Azizi, S. Behzadi, A. Stefanakis","doi":"10.4491/eer.2023.064","DOIUrl":null,"url":null,"abstract":"The construction of new breakwaters in Anzali port has had a significant impact on the water body of the Anzali international lagoon. The Anzali wetland is under threat from sediment influx from mountainous regions, and the study used satellite image processing to demonstrate how the construction of new breakwaters impedes the natural transfer of sediment from the lagoon to the sea. The methodology employed a hybrid approach combining two methods: normal water index (MNDWI) and supervised classification (SVM) to detect sediment accumulation in the wetland water zone. Following the construction of new breakwaters in 2009, an island formed and expanded exponentially in parts of Sorkhankol Wildlife Sanctuary's water body. This phenomenon is attributed to decreased water flow caused by increased cross-section current and volume of water, creating a dam-like function against channel flow leading to the sea. Consequently, sediments and suspended loads settle in Sorkhankol's water zone, leading to an increase in island area from 0.39 hectares to over 26 hectares during the studied period. Result showed Kappa coefficients by SVM algorithm for years 2002, 2010, 2012 and 2017 which were found to be 0.76, 0.62, 0.71 and 0.86 respectively indicating that SVM outperforms MNDWI in effectively monitoring landform changes.","PeriodicalId":11704,"journal":{"name":"Environmental Engineering Research","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Engineering Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.4491/eer.2023.064","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The construction of new breakwaters in Anzali port has had a significant impact on the water body of the Anzali international lagoon. The Anzali wetland is under threat from sediment influx from mountainous regions, and the study used satellite image processing to demonstrate how the construction of new breakwaters impedes the natural transfer of sediment from the lagoon to the sea. The methodology employed a hybrid approach combining two methods: normal water index (MNDWI) and supervised classification (SVM) to detect sediment accumulation in the wetland water zone. Following the construction of new breakwaters in 2009, an island formed and expanded exponentially in parts of Sorkhankol Wildlife Sanctuary's water body. This phenomenon is attributed to decreased water flow caused by increased cross-section current and volume of water, creating a dam-like function against channel flow leading to the sea. Consequently, sediments and suspended loads settle in Sorkhankol's water zone, leading to an increase in island area from 0.39 hectares to over 26 hectares during the studied period. Result showed Kappa coefficients by SVM algorithm for years 2002, 2010, 2012 and 2017 which were found to be 0.76, 0.62, 0.71 and 0.86 respectively indicating that SVM outperforms MNDWI in effectively monitoring landform changes.
期刊介绍:
The Environmental Engineering Research (EER) is published quarterly by the Korean Society of Environmental Engineers (KSEE). The EER covers a broad spectrum of the science and technology of air, soil, and water management while emphasizing scientific and engineering solutions to environmental issues encountered in industrialization and urbanization. Particularly, interdisciplinary topics and multi-regional/global impacts (including eco-system and human health) of environmental pollution as well as scientific and engineering aspects of novel technologies are considered favorably. The scope of the Journal includes the following areas, but is not limited to:
1. Atmospheric Environment & Climate Change: Global and local climate change, greenhouse gas control, and air quality modeling.
2. Renewable Energy & Waste Management: Energy recovery from waste, incineration, landfill, and green energy.
3. Environmental Biotechnology & Ecology: Nano-biosensor, environmental genomics, bioenergy, and environmental eco-engineering.
4. Physical & Chemical Technology: Membrane technology and advanced oxidation.
5. Environmental System Engineering: Seawater desalination, ICA (instrument, control, and automation), and water reuse.
6. Environmental Health & Toxicology: Micropollutants, hazardous materials, ecotoxicity, and environmental risk assessment.