Maternal Immune Activation by Polyinosinic-Polycytidylic Acid Exposure Causes Cerebral Cortical Dysgenesis through Dysregulated Cell Cycle Kinetics of Neural Stem/Progenitor Cells

IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Developmental Neuroscience Pub Date : 2023-01-24 DOI:10.1159/000529317
Marie Sasaki, T. Mitsuhashi, Fumiko Goto, S. Shibata, K. Kubo, Shinju Oku, Akihiro Owashi, Takao Takahashi
{"title":"Maternal Immune Activation by Polyinosinic-Polycytidylic Acid Exposure Causes Cerebral Cortical Dysgenesis through Dysregulated Cell Cycle Kinetics of Neural Stem/Progenitor Cells","authors":"Marie Sasaki, T. Mitsuhashi, Fumiko Goto, S. Shibata, K. Kubo, Shinju Oku, Akihiro Owashi, Takao Takahashi","doi":"10.1159/000529317","DOIUrl":null,"url":null,"abstract":"Maternal immune activation reportedly causes dysregulation of the cell cycle in stem cells and impairment of higher cortical function in rodents. Furthermore, in humans, maternal immune activation during the first to second trimester of pregnancy is strongly correlated with increased incidence of autism spectrum disorder in the offspring. Here, we show that in utero exposure to polyinosinic-polycytidylic acid (poly (I:C)) in mice during the early phase of neuronogenesis increases the probability of differentiation (quiescent fraction [Q fraction]) of neural stem/progenitor cells (NSPCs) without change in the length of cell cycle. This abnormal increase in the Q fraction is assumed to reduce the peak population size of NSPCs, resulting in the thinning of the neocortex in offspring because of the reduced production of neurons. Furthermore, the neocortex of poly (I:C)-exposed mice does not exhibit a layer-specific reduction in radial thickness, possibly because of increased apoptosis caused by poly (I:C) exposure during all stages of cortical development. These results suggest that maternal immune activation by poly (I:C) exposure may affect neocortical histogenesis by altering the cell cycle kinetics of NSPCs. In addition, the timing and amount of poly (I:C) exposure during pregnancy may have profound effects on cerebral cortical histogenesis.","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"45 1","pages":"115 - 125"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000529317","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Maternal immune activation reportedly causes dysregulation of the cell cycle in stem cells and impairment of higher cortical function in rodents. Furthermore, in humans, maternal immune activation during the first to second trimester of pregnancy is strongly correlated with increased incidence of autism spectrum disorder in the offspring. Here, we show that in utero exposure to polyinosinic-polycytidylic acid (poly (I:C)) in mice during the early phase of neuronogenesis increases the probability of differentiation (quiescent fraction [Q fraction]) of neural stem/progenitor cells (NSPCs) without change in the length of cell cycle. This abnormal increase in the Q fraction is assumed to reduce the peak population size of NSPCs, resulting in the thinning of the neocortex in offspring because of the reduced production of neurons. Furthermore, the neocortex of poly (I:C)-exposed mice does not exhibit a layer-specific reduction in radial thickness, possibly because of increased apoptosis caused by poly (I:C) exposure during all stages of cortical development. These results suggest that maternal immune activation by poly (I:C) exposure may affect neocortical histogenesis by altering the cell cycle kinetics of NSPCs. In addition, the timing and amount of poly (I:C) exposure during pregnancy may have profound effects on cerebral cortical histogenesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多肌苷-多胞酸暴露导致母体免疫激活通过神经干/祖细胞细胞周期动力学失调导致大脑皮质发育不良
据报道,母体免疫激活导致啮齿动物干细胞细胞周期失调和高级皮质功能受损。此外,在人类中,在怀孕的前三个月到中期,母体免疫激活与后代自闭症谱系障碍的发病率增加密切相关。在这里,我们发现小鼠在子宫内暴露于多肌苷-多胞酸(poly (I:C))可以增加神经干细胞/祖细胞(NSPCs)的分化概率(静止分数[Q分数]),而细胞周期长度没有变化。这种Q分数的异常增加被认为会降低NSPCs的峰值种群大小,导致后代新皮层变薄,因为神经元的产生减少。此外,聚(I:C)暴露小鼠的新皮质在径向厚度上没有表现出层特异性的减少,这可能是因为在皮质发育的所有阶段,聚(I:C)暴露导致细胞凋亡增加。这些结果表明,母体多聚(I:C)暴露的免疫激活可能通过改变NSPCs的细胞周期动力学来影响新皮质组织发生。此外,怀孕期间多聚(I:C)暴露的时间和数量可能对大脑皮质组织发生有深远的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Developmental Neuroscience
Developmental Neuroscience 医学-发育生物学
CiteScore
4.00
自引率
3.40%
发文量
49
审稿时长
>12 weeks
期刊介绍: ''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.
期刊最新文献
Ex vivo magnetic resonance imaging of the human fetal brain. Pubertal- and Stress-Dependent Changes in Cellular Activation and Expression of Excitatory Amino Acid Receptor Subunits in the Paraventricular Nucleus of the Hypothalamus in Male and Female Rats. Dexmedetomidine Alleviates the Long-Term Neurodevelopmental Toxicity Induced by Sevoflurane in the Developing Brain. The Relationship between Early Exposure to General Anesthesia and Neurobehavioral Deficits. Ultrarare Variants in DNA Damage Repair Genes in Pediatric Acute-Onset Neuropsychiatric Syndrome or Acute Behavioral Regression in Neurodevelopmental Disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1