{"title":"Applying machine learning to model radon using topsoil geochemistry","authors":"M. Banríon , M. Cobelli , Q.G. Crowley","doi":"10.1016/j.apgeochem.2023.105790","DOIUrl":null,"url":null,"abstract":"<div><p>Radon is classified as a Class 1 carcinogen, being the leading cause of lung cancer in non-smokers. Understanding the prominent sources of radon helps to mitigate against the adverse effects of radon exposure. Considering soil-gas radon is the main contributor to indoor radon, it is possible that soil geochemistry can be used as a proxy for the soil radon emanation potential or geogenic radon classes for a particular location. This paper investigates the relationship between soil geochemistry and geogenic radon. A large area of 17,983 km<sup>2</sup> from the West, Midlands and East of Ireland was selected to represent a range of geology types and radon categories. A rigorous assessment is presented to investigate the relationship of geogenic radon and topsoil geochemistry; using univariate processes (i.e. r<sup>2</sup>, Pearson r and heatmaps) and multivariate techniques (i.e. principle component analysis (PCA) and machine learning (ML) algorithms including Gaussian process regression, logistic regression and random forest). Here, PCA and ML techniques were used to test the utility of soil geochemistry to predict geogenic radon classes. Gaussian Process Regression yielded the highest accuracy (74%) and f1-score (0.74) of all models. The feature importance (i.e. highest ranking elements for predicting geogenic radon class) from the ML models outputs elements including [Y, Tl, Mn, Cr, Co, Be, Sc and Rb]. The PCA biplot demonstrates that these elements cluster in conjunction with higher geogenic radon categories. Multivariate data analysis reveals that certain elements important for predicting higher geogenic radon classes, also covary together within topsoil samples; here these are termed “radon-prone elements”. Spatial covariance of radon-prone elements permits soil geochemistry to be used as a tool for understanding the distribution of geogenic radon. The methodology presented in this paper provides a comprehensive geo-statistical approach to investigate the relation between topsoil geochemistry and geogenic radon. This approach could be applied as a diagnostic tool to assist radon mitigation measures, hence adding value to legacy soil geochemistry datasets.</p></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"158 ","pages":"Article 105790"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292723002354","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Radon is classified as a Class 1 carcinogen, being the leading cause of lung cancer in non-smokers. Understanding the prominent sources of radon helps to mitigate against the adverse effects of radon exposure. Considering soil-gas radon is the main contributor to indoor radon, it is possible that soil geochemistry can be used as a proxy for the soil radon emanation potential or geogenic radon classes for a particular location. This paper investigates the relationship between soil geochemistry and geogenic radon. A large area of 17,983 km2 from the West, Midlands and East of Ireland was selected to represent a range of geology types and radon categories. A rigorous assessment is presented to investigate the relationship of geogenic radon and topsoil geochemistry; using univariate processes (i.e. r2, Pearson r and heatmaps) and multivariate techniques (i.e. principle component analysis (PCA) and machine learning (ML) algorithms including Gaussian process regression, logistic regression and random forest). Here, PCA and ML techniques were used to test the utility of soil geochemistry to predict geogenic radon classes. Gaussian Process Regression yielded the highest accuracy (74%) and f1-score (0.74) of all models. The feature importance (i.e. highest ranking elements for predicting geogenic radon class) from the ML models outputs elements including [Y, Tl, Mn, Cr, Co, Be, Sc and Rb]. The PCA biplot demonstrates that these elements cluster in conjunction with higher geogenic radon categories. Multivariate data analysis reveals that certain elements important for predicting higher geogenic radon classes, also covary together within topsoil samples; here these are termed “radon-prone elements”. Spatial covariance of radon-prone elements permits soil geochemistry to be used as a tool for understanding the distribution of geogenic radon. The methodology presented in this paper provides a comprehensive geo-statistical approach to investigate the relation between topsoil geochemistry and geogenic radon. This approach could be applied as a diagnostic tool to assist radon mitigation measures, hence adding value to legacy soil geochemistry datasets.
期刊介绍:
Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application.
Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.