C. Vernon, M. Hejazi, S. Turner, Yaling Liu, Caleb Braun, Xinya Li, R. Link
{"title":"A Global Hydrologic Framework to Accelerate Scientific Discovery","authors":"C. Vernon, M. Hejazi, S. Turner, Yaling Liu, Caleb Braun, Xinya Li, R. Link","doi":"10.5334/JORS.245","DOIUrl":null,"url":null,"abstract":"With the ability to simulate historical and future global water availability on a monthly time step at a spatial resolution of 0.5 geographic degree, the Python package Xanthos version 1 provided a solid foundation for continuing advancements in global water dynamics science. The goal of Xanthos version 2 was to build upon previous investments by creating a Python framework where core components of the model (potential evapotranspiration (PET), runoff generation, and river routing) could be interchanged or extended without having to start from scratch. Xanthos 2 utilizes a component-style architecture which enables researchers to quickly incorporate and test cutting-edge research in a stable modeling environment prebuilt with diagnostics. Major advancements for Xanthos 2 were also achieved by the creation of a robust default configuration with a calibration module, hydropower modules, and new PET modules, which are now available to the scientific community. Funding statement: This research was supported by the U.S. Department of Energy, Office of Science, as part of research in Multi-Sector Dynamics, Earth and Environmental System Modeling Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. The views and opinions expressed in this paper are those of the authors alone.","PeriodicalId":37323,"journal":{"name":"Journal of Open Research Software","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Research Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/JORS.245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 21
Abstract
With the ability to simulate historical and future global water availability on a monthly time step at a spatial resolution of 0.5 geographic degree, the Python package Xanthos version 1 provided a solid foundation for continuing advancements in global water dynamics science. The goal of Xanthos version 2 was to build upon previous investments by creating a Python framework where core components of the model (potential evapotranspiration (PET), runoff generation, and river routing) could be interchanged or extended without having to start from scratch. Xanthos 2 utilizes a component-style architecture which enables researchers to quickly incorporate and test cutting-edge research in a stable modeling environment prebuilt with diagnostics. Major advancements for Xanthos 2 were also achieved by the creation of a robust default configuration with a calibration module, hydropower modules, and new PET modules, which are now available to the scientific community. Funding statement: This research was supported by the U.S. Department of Energy, Office of Science, as part of research in Multi-Sector Dynamics, Earth and Environmental System Modeling Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. The views and opinions expressed in this paper are those of the authors alone.