{"title":"DGR: Deep Gender Recognition of Human Speech","authors":"Rami Suleiman Alkhawaldeh","doi":"10.20944/PREPRINTS201903.0047.V1","DOIUrl":null,"url":null,"abstract":"The speech entailed in human voice comprises essentially para-linguistic information used in many voice-recognition applications. Gender voice-recognition is considered one of the pivotal parts to be detected from a given voice, a task that involves certain complications. In order to distinguish gender from a voice signal, a set of techniques have been employed to determine relevant features to be utilized for building a model from a training set. This model is useful for determining the gender (i.e, male or female) from a voice signal. The contributions are involved in two folds: (i) providing analysis information about well-known voice signal features using a prominent dataset, (ii) studying various machine learning models of different theoretical families to classify the voice gender, and (iii) using three prominent feature selection algorithms to find promisingly optimal features for improving classification models. Experimental results show the importance of sub-features over others, which are vital for enhancing the efficiency of classification models performance. Experimentation reveals that the best recall value is equal to 99.97%; 99.7% of two models of Deep Learning (DL) and Support Vector Machine (SVM) and with feature selection the best recall value is 100% for SVM techniques.","PeriodicalId":55175,"journal":{"name":"Discrete Mathematics and Theoretical Computer Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Theoretical Computer Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.20944/PREPRINTS201903.0047.V1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The speech entailed in human voice comprises essentially para-linguistic information used in many voice-recognition applications. Gender voice-recognition is considered one of the pivotal parts to be detected from a given voice, a task that involves certain complications. In order to distinguish gender from a voice signal, a set of techniques have been employed to determine relevant features to be utilized for building a model from a training set. This model is useful for determining the gender (i.e, male or female) from a voice signal. The contributions are involved in two folds: (i) providing analysis information about well-known voice signal features using a prominent dataset, (ii) studying various machine learning models of different theoretical families to classify the voice gender, and (iii) using three prominent feature selection algorithms to find promisingly optimal features for improving classification models. Experimental results show the importance of sub-features over others, which are vital for enhancing the efficiency of classification models performance. Experimentation reveals that the best recall value is equal to 99.97%; 99.7% of two models of Deep Learning (DL) and Support Vector Machine (SVM) and with feature selection the best recall value is 100% for SVM techniques.
期刊介绍:
DMTCS is a open access scientic journal that is online since 1998. We are member of the Free Journal Network.
Sections of DMTCS
Analysis of Algorithms
Automata, Logic and Semantics
Combinatorics
Discrete Algorithms
Distributed Computing and Networking
Graph Theory.