Low-Order Finite-Volume Based Riemann Solver for Application to Aeroacoustic Problems

W. V. D. Velden, J. Akhnoukh, A. V. Zuijlen
{"title":"Low-Order Finite-Volume Based Riemann Solver for Application to Aeroacoustic Problems","authors":"W. V. D. Velden, J. Akhnoukh, A. V. Zuijlen","doi":"10.1142/S0218396X17500102","DOIUrl":null,"url":null,"abstract":"The current study focuses on the development of a three-dimensional flow and aeroacoustic solver developed in a finite-volume framework which uses similar, dense meshes for both flow and acoustics while using low-order schemes from the finite volume framework to minimize the points per wavelength, overcomes interpolation errors between flow and acoustic meshes, since one-to-one mesh mapping will be applied, minimize the computational time for the acoustic loop with respect to the fluid flow loop and provides a practical, easy to use integrated numerical tool. As dispersion errors are common within this computational framework, Riemann fluxes are used to solve the linearized Euler equations with unsteady quadrupole and dipole sources. A coupling scheme is presented and common issues with boundary conditions, mesh topology and sub-cycling are discussed. Various verification and validation test cases show the expected behavior and trends with respect to analytic and reference results. An application case is presented, where airfoil self-noise is determined around a beveled flat plate.","PeriodicalId":54860,"journal":{"name":"Journal of Computational Acoustics","volume":"25 1","pages":"1750010"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S0218396X17500102","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218396X17500102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

The current study focuses on the development of a three-dimensional flow and aeroacoustic solver developed in a finite-volume framework which uses similar, dense meshes for both flow and acoustics while using low-order schemes from the finite volume framework to minimize the points per wavelength, overcomes interpolation errors between flow and acoustic meshes, since one-to-one mesh mapping will be applied, minimize the computational time for the acoustic loop with respect to the fluid flow loop and provides a practical, easy to use integrated numerical tool. As dispersion errors are common within this computational framework, Riemann fluxes are used to solve the linearized Euler equations with unsteady quadrupole and dipole sources. A coupling scheme is presented and common issues with boundary conditions, mesh topology and sub-cycling are discussed. Various verification and validation test cases show the expected behavior and trends with respect to analytic and reference results. An application case is presented, where airfoil self-noise is determined around a beveled flat plate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于低阶有限体积的黎曼解算器在气动声学问题中的应用
目前的研究重点是在有限体积框架中开发三维流动和气动声学求解器,该求解器使用类似的密集网格来处理流动和声学,同时使用有限体积框架中的低阶格式来最小化每个波长的点,克服了流动和声学网格之间的插值误差,因为将应用一对一的网格映射。最小化声学回路相对于流体流动回路的计算时间,并提供了一个实用的,易于使用的集成数值工具。由于色散误差在该计算框架中很常见,黎曼通量被用于求解非定常四极和偶极源的线性化欧拉方程。提出了一种耦合方案,并讨论了边界条件、网格拓扑和子循环等常见问题。各种验证和确认测试用例显示了与分析和参考结果相关的预期行为和趋势。提出了一个应用实例,其中翼型自噪声是确定周围的斜面平板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊介绍: Currently known as Journal of Theoretical and Computational Acoustics (JTCA).The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics. Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations. The journal strives to be flexible in the type of high quality papers it publishes and their format. Equally desirable are Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational acoustics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research in which other than strictly computational arguments may be important in establishing a basis for further developments. Tutorial review papers, covering some of the important issues in Computational Mathematical Methods, Scientific Computing, and their applications. Short notes, which present specific new results and techniques in a brief communication. The journal will occasionally publish significant contributions which are larger than the usual format for regular papers. Special issues which report results of high quality workshops in related areas and monographs of significant contributions in the Series of Computational Acoustics will also be published.
期刊最新文献
Nonlinear Distortion Characteristic Analysis for the Finite Amplitude Sound Pressures in the Pistonphone Acoustic Imaging with Compressed Sensing and Microphone Arrays Acoustical Green’s Function and Boundary Element Techniques for 3D Half-Space Problems A numerical model of an acoustic metamaterial using the boundary element method including viscous and thermal losses Diffusion Equation-Based Finite Element Modeling of a Monumental Worship Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1