Context-Driven Method in Realization of Optimized Human-Robot Interaction

IF 0.7 Q3 ENGINEERING, MULTIDISCIPLINARY TEHNICKI GLASNIK-TECHNICAL JOURNAL Pub Date : 2022-06-23 DOI:10.31803/tg-20220504100707
Leonard Koren, Tomislav Stipančić, Andrija Ricko, Juraj Benić
{"title":"Context-Driven Method in Realization of Optimized Human-Robot Interaction","authors":"Leonard Koren, Tomislav Stipančić, Andrija Ricko, Juraj Benić","doi":"10.31803/tg-20220504100707","DOIUrl":null,"url":null,"abstract":"Perceptual uncertainty and environmental volatility are among the most enduring challenges in robotic research today. Contemporary robotic systems are usually designed to work in specific and controlled domains where a total number of variables is defined. Traditional solutions therefore often result in over-constrained interaction spaces or rigid system architectures where any unexpected change can result in system failure. The focus of this work is set on achieving a constant adaptation of the system to changes through interaction. A computational mechanism based on the entropy reduction method is integrated along with the three-component control model. This model is seen as a context-to-data interpreter used to provide context-aware reasoning to the technical system. The mechanism is using a decrease in interaction uncertainties when proofs are provided to the system. In this way, the robot can choose the right interaction strategy that resolves reasoning ambiguities most efficiently","PeriodicalId":43419,"journal":{"name":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31803/tg-20220504100707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Perceptual uncertainty and environmental volatility are among the most enduring challenges in robotic research today. Contemporary robotic systems are usually designed to work in specific and controlled domains where a total number of variables is defined. Traditional solutions therefore often result in over-constrained interaction spaces or rigid system architectures where any unexpected change can result in system failure. The focus of this work is set on achieving a constant adaptation of the system to changes through interaction. A computational mechanism based on the entropy reduction method is integrated along with the three-component control model. This model is seen as a context-to-data interpreter used to provide context-aware reasoning to the technical system. The mechanism is using a decrease in interaction uncertainties when proofs are provided to the system. In this way, the robot can choose the right interaction strategy that resolves reasoning ambiguities most efficiently
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
情境驱动方法在优化人机交互中的应用
感知不确定性和环境波动是当今机器人研究中最持久的挑战之一。现代机器人系统通常被设计为在特定和受控的领域工作,其中定义了变量的总数。因此,传统的解决方案经常导致过度约束的交互空间或僵化的系统架构,其中任何意外的更改都可能导致系统故障。这项工作的重点是通过交互实现系统对变化的不断适应。将基于熵约法的计算机制与三分量控制模型相结合。该模型被视为上下文到数据的解释器,用于向技术系统提供上下文感知推理。当向系统提供证据时,该机制利用了相互作用不确定性的减少。这样,机器人可以选择最有效地解决推理歧义的正确交互策略
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
TEHNICKI GLASNIK-TECHNICAL JOURNAL
TEHNICKI GLASNIK-TECHNICAL JOURNAL ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
8.30%
发文量
85
审稿时长
15 weeks
期刊最新文献
Standardization of Project Management Practices of Automotive Industry Suppliers Technical Characteristics of Incunabulum in Europe Face Detection and Recognition Using Raspberry PI Computer A Returnable Transport Item to Integrate Logistics 4.0 and Circular Economy in Pharma Supply Chains Modelling Freight Allocation and Transportation Lead-Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1