These things take time: what is the role of the hippocampus in recognition memory over extended delays?

IF 2 4区 医学 Q3 NEUROSCIENCES Cognitive Neuroscience Pub Date : 2022-05-16 DOI:10.1080/17588928.2022.2076073
C. Kirwan
{"title":"These things take time: what is the role of the hippocampus in recognition memory over extended delays?","authors":"C. Kirwan","doi":"10.1080/17588928.2022.2076073","DOIUrl":null,"url":null,"abstract":"ABSTRACT In a clever experimental design, Tallman, Clark, and Smith (this issue) tested the changes in fMRI activation and functional connectivity in the hippocampus and cortex as a function of memory age. They found that activation changed according to a power function (both increasing and decreasing) in several cortical regions but not within the hippocampus or medial temporal lobe (MTL). Further, functional connectivity increased with memory age between cortical regions but decreased for the hippocampus. Taken together, these results offer strong support for the standard consolidation model. However, they leave open the question of what role the hippocampus plays in recognition memory performance.","PeriodicalId":10413,"journal":{"name":"Cognitive Neuroscience","volume":"13 1","pages":"147 - 148"},"PeriodicalIF":2.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17588928.2022.2076073","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In a clever experimental design, Tallman, Clark, and Smith (this issue) tested the changes in fMRI activation and functional connectivity in the hippocampus and cortex as a function of memory age. They found that activation changed according to a power function (both increasing and decreasing) in several cortical regions but not within the hippocampus or medial temporal lobe (MTL). Further, functional connectivity increased with memory age between cortical regions but decreased for the hippocampus. Taken together, these results offer strong support for the standard consolidation model. However, they leave open the question of what role the hippocampus plays in recognition memory performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
这些事情需要时间:海马体在识别记忆中的作用是什么?
摘要Tallman、Clark和Smith(本期)在一项巧妙的实验设计中,测试了海马和皮层功能磁共振成像激活和功能连接随记忆年龄的变化。他们发现,在几个皮层区域,激活会根据功率函数(增加和减少)而变化,但在海马体或内侧颞叶(MTL)内则不然。此外,皮层区域之间的功能连接随着记忆年龄的增长而增加,但海马体的功能连接减少。综合来看,这些结果为标准合并模型提供了强有力的支持。然而,他们留下了一个悬而未决的问题,即海马体在识别记忆表现中扮演什么角色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Neuroscience
Cognitive Neuroscience NEUROSCIENCES-
CiteScore
3.60
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Cognitive Neuroscience publishes high quality discussion papers and empirical papers on any topic in the field of cognitive neuroscience including perception, attention, memory, language, action, social cognition, and executive function. The journal covers findings based on a variety of techniques such as fMRI, ERPs, MEG, TMS, and focal lesion studies. Contributions that employ or discuss multiple techniques to shed light on the spatial-temporal brain mechanisms underlying a cognitive process are encouraged.
期刊最新文献
Visuo-spatial working memory abilities modulate mental rotation: Evidence from event-related potentials. Theoretical strategies for an embodied cognitive neuroscience: Mechanistic explanations of brain-body-environment systems. Beyond embodiment: Rethinking the integration of cognitive neuroscience and mechanistic explanations. Embodied (4EA) cognitive computational neuroscience. How to build a better 4E cognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1