{"title":"Model-driven design of bioactive glasses: from molecular dynamics through machine learning","authors":"Maziar Montazerian, Edgar Dutra Zanotto, J. Mauro","doi":"10.1080/09506608.2019.1694779","DOIUrl":null,"url":null,"abstract":"ABSTRACT Research in bioactive glasses (BGs) has traditionally been performed through trial-and-error experimentation. However, several modelling techniques will accelerate the discovery of new BGs as part of the ongoing endeavour to ‘decode the glass genome.’ Here, we critically review recent publications applying molecular dynamics simulations, machine learning approaches, and other modelling techniques for understanding BGs. We argue that modelling should be utilised more frequently in the design of BGs to achieve properties such as high bioactivity, high fracture strength and toughness, low density, and controlled morphology. Another challenge is modelling the biological response to biomaterials, such as their ability to foster protein adsorption, cell adhesion, cell proliferation, osteogenesis, angiogenesis, and bactericidal effects. The development of databases integrated with robust computational tools will be indispensable to these efforts. Future challenges are thus envisaged in which the compositional design, synthesis, characterisation, and application of BGs can be greatly accelerated by computational modelling.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"65 1","pages":"297 - 321"},"PeriodicalIF":16.8000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09506608.2019.1694779","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2019.1694779","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 26
Abstract
ABSTRACT Research in bioactive glasses (BGs) has traditionally been performed through trial-and-error experimentation. However, several modelling techniques will accelerate the discovery of new BGs as part of the ongoing endeavour to ‘decode the glass genome.’ Here, we critically review recent publications applying molecular dynamics simulations, machine learning approaches, and other modelling techniques for understanding BGs. We argue that modelling should be utilised more frequently in the design of BGs to achieve properties such as high bioactivity, high fracture strength and toughness, low density, and controlled morphology. Another challenge is modelling the biological response to biomaterials, such as their ability to foster protein adsorption, cell adhesion, cell proliferation, osteogenesis, angiogenesis, and bactericidal effects. The development of databases integrated with robust computational tools will be indispensable to these efforts. Future challenges are thus envisaged in which the compositional design, synthesis, characterisation, and application of BGs can be greatly accelerated by computational modelling.
期刊介绍:
International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content.
Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information.
Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.