OpenPose based Smoking Gesture Recognition System using Artificial Neural Network

IF 0.7 Q3 ENGINEERING, MULTIDISCIPLINARY TEHNICKI GLASNIK-TECHNICAL JOURNAL Pub Date : 2023-05-13 DOI:10.31803/tg-20221220200605
Tae-Yeong Jeong, Il-Kyu Ha
{"title":"OpenPose based Smoking Gesture Recognition System using Artificial Neural Network","authors":"Tae-Yeong Jeong, Il-Kyu Ha","doi":"10.31803/tg-20221220200605","DOIUrl":null,"url":null,"abstract":"Smoking is an extremely important health problem in modern society. This study focuses on a method for preventing smoking in non-smoking areas, such as public places, as well as the development of an artificial neural network based smoking motion recognition system for more accurately recognizing smokers in such areas. In particular, we attempted to increase the rate of recognition of smoking behaviors using an OpenPose based algorithm and the accuracy of such recognition by additionally applying a hardware device for recognizing cigarette smoke. In addition, a preprocessing method for inputting a dataset into the proposed system is proposed. To improve the recognition performance, four types of dataset models were created, and the most suitable dataset model was selected experimentally. Based on this dataset model, test data were created and input into the proposed neural network based smoking behavior recognition system. In addition, the nearest neighbor interpolation method was selected experimentally as an image interpolation approach and applied to the image preprocessing. When applying experimental data based on learned data, the developed system showed a recognition rate of 70-75%, and the smoking recognition accuracy was increased through the addition of the hardware device.","PeriodicalId":43419,"journal":{"name":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31803/tg-20221220200605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Smoking is an extremely important health problem in modern society. This study focuses on a method for preventing smoking in non-smoking areas, such as public places, as well as the development of an artificial neural network based smoking motion recognition system for more accurately recognizing smokers in such areas. In particular, we attempted to increase the rate of recognition of smoking behaviors using an OpenPose based algorithm and the accuracy of such recognition by additionally applying a hardware device for recognizing cigarette smoke. In addition, a preprocessing method for inputting a dataset into the proposed system is proposed. To improve the recognition performance, four types of dataset models were created, and the most suitable dataset model was selected experimentally. Based on this dataset model, test data were created and input into the proposed neural network based smoking behavior recognition system. In addition, the nearest neighbor interpolation method was selected experimentally as an image interpolation approach and applied to the image preprocessing. When applying experimental data based on learned data, the developed system showed a recognition rate of 70-75%, and the smoking recognition accuracy was increased through the addition of the hardware device.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于OpenPose的人工神经网络吸烟手势识别系统
吸烟是现代社会一个极其重要的健康问题。本研究的重点是在公共场所等非吸烟区预防吸烟的方法,以及基于人工神经网络的吸烟动作识别系统的开发,以便更准确地识别非吸烟区的吸烟者。特别是,我们试图使用基于OpenPose的算法来提高对吸烟行为的识别率,并通过额外应用一个识别香烟烟雾的硬件设备来提高这种识别的准确性。此外,还提出了一种将数据集输入系统的预处理方法。为了提高识别性能,建立了四种类型的数据集模型,并通过实验选择了最适合的数据集模型。基于该数据集模型,生成测试数据并将其输入到基于神经网络的吸烟行为识别系统中。此外,实验选择了最近邻插值方法作为图像插值方法,并将其应用于图像预处理。在学习数据的基础上应用实验数据,所开发的系统的识别率达到70-75%,并通过硬件设备的加入提高了吸烟识别的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
TEHNICKI GLASNIK-TECHNICAL JOURNAL
TEHNICKI GLASNIK-TECHNICAL JOURNAL ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
8.30%
发文量
85
审稿时长
15 weeks
期刊最新文献
Standardization of Project Management Practices of Automotive Industry Suppliers Technical Characteristics of Incunabulum in Europe Face Detection and Recognition Using Raspberry PI Computer A Returnable Transport Item to Integrate Logistics 4.0 and Circular Economy in Pharma Supply Chains Modelling Freight Allocation and Transportation Lead-Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1