Vulnerability of the Tukey M Robust Regression Method Against Multicollinearity

F. Karadag, H. Sazak
{"title":"Vulnerability of the Tukey M Robust Regression Method Against Multicollinearity","authors":"F. Karadag, H. Sazak","doi":"10.19113/sdufenbed.1141519","DOIUrl":null,"url":null,"abstract":"In this study, we investigate whether the Tukey M robust regression method provides a solution for the data sets suffering from multicollinearity problem. It is observed that high values of variance inflation factors (VIF) which is a sign of the multiple linear link among the explanatory variables, cannot be controlled by the robust methods which work through the residual values. The reason for this fact is that multicollinearity and high values of VIF which is a result of multicollinearity do not produce extreme residuals. For this reason, the robust methods cannot provide a solution for the high VIF problem. This fact is shown by an extensive simulation study. In the simulation study, the explanatory variables were derived from trivariate normal distribution for three different correlation values. In this study, we also used two real-life data examples and we observed that the results support the findings of the simulation study. For all these reasons, we can conclude that specialized methods should be utilized in the case of multicollinearity.","PeriodicalId":30858,"journal":{"name":"Suleyman Demirel Universitesi Fen Bilimleri Enstitusu Dergisi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suleyman Demirel Universitesi Fen Bilimleri Enstitusu Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19113/sdufenbed.1141519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate whether the Tukey M robust regression method provides a solution for the data sets suffering from multicollinearity problem. It is observed that high values of variance inflation factors (VIF) which is a sign of the multiple linear link among the explanatory variables, cannot be controlled by the robust methods which work through the residual values. The reason for this fact is that multicollinearity and high values of VIF which is a result of multicollinearity do not produce extreme residuals. For this reason, the robust methods cannot provide a solution for the high VIF problem. This fact is shown by an extensive simulation study. In the simulation study, the explanatory variables were derived from trivariate normal distribution for three different correlation values. In this study, we also used two real-life data examples and we observed that the results support the findings of the simulation study. For all these reasons, we can conclude that specialized methods should be utilized in the case of multicollinearity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tukey M鲁棒回归方法抗多重共线性的脆弱性
在这项研究中,我们研究了Tukey M稳健回归方法是否为遭受多重共线性问题的数据集提供了解决方案。可以观察到,方差膨胀因子(VIF)的高值是解释变量之间多重线性联系的标志,不能通过处理残差值的稳健方法来控制。这一事实的原因是多重共线性和作为多重共线性的结果的VIF的高值不会产生极端残差。因此,鲁棒方法不能为高VIF问题提供解决方案。一项广泛的模拟研究表明了这一事实。在模拟研究中,解释变量是根据三个不同相关值的三元正态分布得出的。在这项研究中,我们还使用了两个真实的数据示例,我们观察到结果支持模拟研究的结果。由于所有这些原因,我们可以得出结论,在多重共线性的情况下应该使用专门的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
37
审稿时长
10 weeks
期刊最新文献
Accelerately Expanding Cosmologies in f(R,Φ,X) Theory Deve Dikeni (Silybum marianum) Tohumu Ununun Tavuk Köfte Üretiminde Kullanım Olanakları Characterization of Zeolites by XRD, SEM, FTIR Analysis and BET Method and Determination of Surface Acidic Properties of Thermal Treated Zeolites Performance Analysis of a PVT Integrated CO2 Powered Hybrid Heat Pump System Konut Fiyatlarının Tahmini için Polinomsal Regresyon ve Yapay Sinir Ağları Yöntemlerinin Uygulamalı Karşılaştırılması
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1