Effect of leading-edge tubercles on the flow over low-aspect-ratio wings at low Reynolds number

IF 3.2 3区 工程技术 Q2 MECHANICS Theoretical and Applied Mechanics Letters Pub Date : 2023-01-01 DOI:10.1016/j.taml.2022.100386
Pengxin Yang, Yichen Zhu, Jinjun Wang
{"title":"Effect of leading-edge tubercles on the flow over low-aspect-ratio wings at low Reynolds number","authors":"Pengxin Yang,&nbsp;Yichen Zhu,&nbsp;Jinjun Wang","doi":"10.1016/j.taml.2022.100386","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional time-resolved particle image velocimetry (TR-PIV) and stereographic particle image velocimetry (SPIV) techniques were used to investigate the effect of leading-edge tubercles on the flow over low-aspect-ratio wing models. The angle of attack is fixed at 10°, and the Reynolds number based on chord length is 5.8 × 10<sup>3</sup>. It is shown that the leading-edge tubercles can effectively mitigate flow separation in the model and also reduce the contribution of wake vortex to the fluctuating energy of flow. Counter-rotating vortex pairs (CVPs) initiated from the peak of leading-edge tubercles can promote nearby momentum exchange, enhance mixing of the flow and increase the energy contained in the boundary layer, which results in resisting the larger adverse pressure gradient. Therefore, it is concluded that CVPs play an important role in mitigating the flow separation for wings with leading-edge tubercles.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034922000666","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

Two-dimensional time-resolved particle image velocimetry (TR-PIV) and stereographic particle image velocimetry (SPIV) techniques were used to investigate the effect of leading-edge tubercles on the flow over low-aspect-ratio wing models. The angle of attack is fixed at 10°, and the Reynolds number based on chord length is 5.8 × 103. It is shown that the leading-edge tubercles can effectively mitigate flow separation in the model and also reduce the contribution of wake vortex to the fluctuating energy of flow. Counter-rotating vortex pairs (CVPs) initiated from the peak of leading-edge tubercles can promote nearby momentum exchange, enhance mixing of the flow and increase the energy contained in the boundary layer, which results in resisting the larger adverse pressure gradient. Therefore, it is concluded that CVPs play an important role in mitigating the flow separation for wings with leading-edge tubercles.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
前缘圆管对低雷诺数低展弦比机翼流动的影响
采用二维时间分辨粒子图像测速技术(TR-PIV)和立体粒子图像测速技术(SPIV)研究了前缘结节对低展弦比机翼模型流动的影响。攻角固定为10°,基于弦长的雷诺数为5.8 × 103。结果表明,在模型中,前缘结节可以有效地缓解流动分离,并降低尾流涡对流动波动能的贡献。由前缘结节峰发起的反向旋转涡对(CVPs)可以促进附近动量交换,增强流动混合,增加边界层所含能量,从而抵抗较大的逆压梯度。综上所述,CVPs在缓解前缘有小结节的机翼流动分离中发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
545
审稿时长
12 weeks
期刊介绍: An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).
期刊最新文献
A New Cyclic Cohesive Zone Model for Fatigue Damage Analysis of Welded Vessel Numerical Study of Flow and Thermal Characteristics of Pulsed Impinging Jet on a Dimpled Surface Constrained re-calibration of two-equation Reynolds-averaged Navier–Stokes models Magnetically-actuated Intracorporeal Biopsy Robot Based on Kresling Origami A New Strain-Based Pentagonal Membrane Finite Element for Solid Mechanics Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1