Chanpen Saralamba, Juan Manuel José-Domínguez, Norberto Asensio
{"title":"Movement dynamics of gibbons after the construction of canopy bridges over a park road","authors":"Chanpen Saralamba, Juan Manuel José-Domínguez, Norberto Asensio","doi":"10.1163/14219980-20211211","DOIUrl":null,"url":null,"abstract":"\n Gibbons (Hylobatidae) are species highly adapted to tree-top living. Thus, their movement can be compromised due to the negative impact roads have on canopy habitats. In this study, we built two single-rope artificial canopy bridges and a ladder bridge at two out of five locations where a group of white-handed gibbons (Hylobates lar) in Khao Yai National Park, Thailand were known to cross a main park road. We compared road crossing frequencies, home-range characteristics, and other ad libitum observations during the periods before and after bridge installation. After bridge construction was complete, the group took 10 weeks to use the single rope bridges to navigate over the road. During 442 group follow observation hours and 539 bridge observation hours, 131 crosses over the road were observed. The adult female usually crossed the road first, and the group showed a clear preference for the single-rope bridges over the ladder bridge (92 crossings versus 5). Gibbons crossed the road approximately once a day and crossed mostly at the bridge locations both before and after bridge construction. There were not significant changes in crossing rates from before (crossing between the tree branches and on the ground) to after bridge installation at both the places where bridges were installed (crossing using the bridges). Nonetheless, with more crossings being in the bridges than on the ground after bridge installation, crossings were presumably safer. These findings suggest that gibbons will cross a road on the ground, risking predation, encountering people, or being hit by a vehicle, but artificial canopy bridges provided a safer crossing option since gibbons no longer crossed on the road or jumped across wide gaps at the two locations where bridges were constructed. Maintaining canopy connectivity over roads using artificial bridges logically improves home range connectivity, potentially gene flow, and safety of canopy dwellers. However, connecting areas which were not previously connected should be considered carefully. The new connection could disrupt group dynamics, particularly for species that defend territories, such as gibbons.","PeriodicalId":50437,"journal":{"name":"Folia Primatologica","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Primatologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1163/14219980-20211211","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Gibbons (Hylobatidae) are species highly adapted to tree-top living. Thus, their movement can be compromised due to the negative impact roads have on canopy habitats. In this study, we built two single-rope artificial canopy bridges and a ladder bridge at two out of five locations where a group of white-handed gibbons (Hylobates lar) in Khao Yai National Park, Thailand were known to cross a main park road. We compared road crossing frequencies, home-range characteristics, and other ad libitum observations during the periods before and after bridge installation. After bridge construction was complete, the group took 10 weeks to use the single rope bridges to navigate over the road. During 442 group follow observation hours and 539 bridge observation hours, 131 crosses over the road were observed. The adult female usually crossed the road first, and the group showed a clear preference for the single-rope bridges over the ladder bridge (92 crossings versus 5). Gibbons crossed the road approximately once a day and crossed mostly at the bridge locations both before and after bridge construction. There were not significant changes in crossing rates from before (crossing between the tree branches and on the ground) to after bridge installation at both the places where bridges were installed (crossing using the bridges). Nonetheless, with more crossings being in the bridges than on the ground after bridge installation, crossings were presumably safer. These findings suggest that gibbons will cross a road on the ground, risking predation, encountering people, or being hit by a vehicle, but artificial canopy bridges provided a safer crossing option since gibbons no longer crossed on the road or jumped across wide gaps at the two locations where bridges were constructed. Maintaining canopy connectivity over roads using artificial bridges logically improves home range connectivity, potentially gene flow, and safety of canopy dwellers. However, connecting areas which were not previously connected should be considered carefully. The new connection could disrupt group dynamics, particularly for species that defend territories, such as gibbons.
期刊介绍:
Recognizing that research in human biology must be founded on a comparative knowledge of our closest relatives, this journal is the natural scientist''s ideal means of access to the best of current primate research. ''Folia Primatologica'' covers fields as diverse as molecular biology and social behaviour, and features articles on ecology, conservation, palaeontology, systematics and functional anatomy. In-depth articles and invited reviews are contributed by the world’s leading primatologists. In addition, special issues provide rapid peer-reviewed publication of conference proceedings. ''Folia Primatologica'' is one of the top-rated primatology publications and is acknowledged worldwide as a high-impact core journal for primatologists, zoologists and anthropologists.